>
Fa   |   Ar   |   En
   Exploiting Single-Cell Quantitative Data to Map Genetic Variants Having Probabilistic Effects  
   
نویسنده chuffart f. ,richard m. ,jost d. ,burny c. ,duplus-bottin h. ,ohya y. ,yvert g.
منبع plos genetics - 2016 - دوره : 12 - شماره : 8
چکیده    Despite the recent progress in sequencing technologies,genome-wide association studies (gwas) remain limited by a statistical-power issue: many polymorphisms contribute little to common trait variation and therefore escape detection. the small contribution sometimes corresponds to incomplete penetrance,which may result from probabilistic effects on molecular regulations. in such cases,genetic mapping may benefit from the wealth of data produced by single-cell technologies. we present here the development of a novel genetic mapping method that allows to scan genomes for single-cell probabilistic trait loci that modify the statistical properties of cellular-level quantitative traits. phenotypic values are acquired on thousands of individual cells,and genetic association is obtained from a multivariate analysis of a matrix of kantorovich distances. no prior assumption is required on the mode of action of the genetic loci involved and,by exploiting all single-cell values,the method can reveal non-deterministic effects. using both simulations and yeast experimental datasets,we show that it can detect linkages that are missed by classical genetic mapping. a probabilistic effect of a single snp on cell shape was detected and validated. the method also detected a novel locus associated with elevated gene expression noise of the yeast galactose regulon. our results illustrate how single-cell technologies can be exploited to improve the genetic dissection of certain common traits. the method is available as an open source r package called ptlmapper. © 2016 chuffart et al.
آدرس laboratoire de biologie et de modélisation de la cellule,ecole normale supérieure de lyon,cnrs,université de lyon,lyon, France, laboratoire de biologie et de modélisation de la cellule,ecole normale supérieure de lyon,cnrs,université de lyon,lyon, France, laboratoire de physique,ecole normale supérieure de lyon,cnrs,université de lyon,lyon,france,university grenoble alpes,cnrs timc-imag lab,umr 5525,grenoble, France, laboratoire de biologie et de modélisation de la cellule,ecole normale supérieure de lyon,cnrs,université de lyon,lyon, France, laboratoire de biologie et de modélisation de la cellule,ecole normale supérieure de lyon,cnrs,université de lyon,lyon, France, department of integrated biosciences,graduate school of frontier sciences,university of tokyo,kashiwa,chiba, Japan, laboratoire de biologie et de modélisation de la cellule,ecole normale supérieure de lyon,cnrs,université de lyon,lyon, France
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved