>
Fa   |   Ar   |   En
   DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation  
   
نویسنده simsek d. ,brunet e. ,wong s.y.-w. ,katyal s. ,gao y. ,mckinnon p.j. ,lou j. ,zhang l. ,li j. ,rebar e.j. ,gregory p.d. ,holmes m.c. ,jasin m.
منبع plos genetics - 2011 - دوره : 7 - شماره : 6
چکیده    Nonhomologous end-joining (nhej) is the primary dna repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. the canonical nhej pathway,including dna ligase iv (lig4),suppresses genomic instability and chromosomal translocations,leading to the notion that a poorly defined,alternative nhej (alt-nhej) pathway generates these rearrangements. here,we investigate the dna ligase requirement of chromosomal translocation formation in mouse cells. mammals have two other dna ligases,lig1 and lig3,in addition to lig4. as deletion of lig3 results in cellular lethality due to its requirement in mitochondria,we used recently developed cell lines deficient in nuclear lig3 but rescued for mitochondrial dna ligase activity. further,zinc finger endonucleases were used to generate dna breaks at endogenous loci to induce translocations. unlike with lig4 deficiency,which causes an increase in translocation frequency,translocations are reduced in frequency in the absence of lig3. residual translocations in lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions,unlike either wild-type or lig4-deficient cells,consistent with the notion that alt-nhej is impaired with lig3 loss. by contrast,lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. however,translocations are further reduced in lig3-deficient cells upon lig1 knockdown,suggesting the existence of two alt-nhej pathways,one that is biased toward microhomology use and requires lig3 and a back-up pathway which does not depend on microhomology and utilizes lig1. © 2011 simsek et al.
آدرس developmental biology program,memorial sloan-kettering cancer center,new york,ny,united states,weill cornell graduate school of medical sciences,new york,ny, United States, museum national d'histoire naturelle,paris,france,cnrs,umr7196,paris,france,inserm,u565,paris, France, sangamo biosciences,richmond,ca, United States, department of genetics and tumor cell biology,st jude children's research hospital,memphis,tn, United States, department of genetics and tumor cell biology,st jude children's research hospital,memphis,tn, United States, department of genetics and tumor cell biology,st jude children's research hospital,memphis,tn, United States, sangamo biosciences,richmond,ca, United States, sangamo biosciences,richmond,ca, United States, sangamo biosciences,richmond,ca, United States, sangamo biosciences,richmond,ca, United States, sangamo biosciences,richmond,ca, United States, sangamo biosciences,richmond,ca, United States, developmental biology program,memorial sloan-kettering cancer center,new york,ny,united states,weill cornell graduate school of medical sciences,new york,ny, United States
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved