|
|
بررسی توانایی ترسیب کربن ریزجلبک chlorella vulgaris در آبهای با شوری متفاوت
|
|
|
|
|
نویسنده
|
شعبانی مهری ,صیادی محمدحسین ,رضایی محمدرضا
|
منبع
|
محيط شناسي - 1394 - دوره : 41 - شماره : 4 - صفحه:879 -886
|
چکیده
|
امروزه استفاده از کشت ریزجلبکها برای کاهش دی اکسید کربن توجه ویژهای را در سراسر دنیا به خود جلب کرده است. این آزمایش با استفاده از پرورش استوک خالص ریزجلبک کلرلا وولگاریس در 3 تیمار و 3 تکرار در محیط آب مقطر، آب دریای شبیهسازیشده و آب طبیعی به مدت 8 روز انجام شد. نتایج نشان میدهد که این ریزجلبک بیشترین تولید زیستتوده و به دنبال آن بیشترین میزان ترسیب کربن پس از طی 8 روز در آب طبیعی با مقادیر (g/l/d) 0.068 و (g/l/d) 0.111 داشته و نرخ رشد آن (day1) 0.131 است. مقدار پارامترهای مذکور در آب مقطر به ترتیب برابر (g/l/d) 0.057، (day1) 0.15 و (g/l/d) 0.093 است. این نتایج بیان میکند که با پرورش این ریزجلبک در آب شهری بهرغم شوربودن، میتوان گام بزرگی در ترسیب کربن برداشت. نتایج آماری آزمون توکی نشان داد که بین نرخ تولید زیستتوده، رشد ویژه و تثبیت کربن اتمسفری، همچنین تعداد سلولها در تیمارهای مختلف شوری آب اختلاف معنیداری در سطح 5 درصد وجود دارد. بنابراین، شوری آب در میزان رشد و ترسیب کربن ریزجلبک کلرلا وولگاریس تاثیر متفاوتی داشته است.
|
کلیدواژه
|
آب شور، بیرجند، ترسیب کربن، کلرلا وولگاریس، گازهای گلخانهای
|
آدرس
|
دانشگاه بیرجند, دانشکدۀ منابع طبیعی و محیط زیست, گروه محیط زیست, ایران, دانشگاه بیرجند, دانشکدۀ منابع طبیعی و محیط زیست, گروه محیط زیست, ایران, دانشگاه بیرجند, دانشکدۀ منابع طبیعی و محیط زیست, گروه محیط زیست, ایران
|
پست الکترونیکی
|
mrrezaei@birjand.ac.ir
|
|
|
|
|
|
|
|
|
Evaluation of carbon sequestration ability by Chlorella vulgaris in water with different salinity
|
|
|
Authors
|
Shabani Mehri ,Sayadi Mohammad hosein ,Rezaei Mohammad reza
|
Abstract
|
Evaluation of carbon sequestration ability by Chlorella vulgaris in water with different salinity Expanded AbstractIntroductionNowadays, cultivation of microalgae in order to reduce CO2 has gained attention all around the world. One of the outstanding features is that photosynthetic efficiency of microalgae is greater than that of terrestrial plants. Carbon dioxide (CO2) has been known as one of the most important greenhouse gases. Global warming is specially caused by Anthropogenic CO2 emissions from fossil fuel utilization especially from coal combustion. Co2 emissions are expected to rise in the coming years because of energy needs increasing in the developing worlds. So many attempts have been made to reduce atmospheric CO2 including chemical absorption, physicochemical adsorption, membrane, cryogenics, chemical looping combustion (CLC) and biotechnology (e.g., terrestrial vegetation or hydroponic algae). Bio fixation via microalgae has been known as a potential and new method for CO2 capture and storage. So one of the most understudied methods is carbon biosequestration whereby autotrophic organisms and plants convert this CO2 into organic carbon through photosynthesis producing large amounts of biomass. Photosynthesis is the original process that created the fixed carbon present in today’s fossil fuels, and microalgae are the origin of these fuels. They are among the fastest growing photosynthetic organisms, using CO2 as their main building blocks. Environmental factors, particularly light, temperature, nutrient status, and salinity, affect photosynthesis and productivity biomass. In order to assess the potential of a microalgae system for directly removing CO2, biomass measurement or growth rate evaluations are necessary. However most studies have focused on culturing microalgae in fresh water according to water quality in most part of Iran, in the present study, we tried to sequestrate CO2 by Chlorella vulgaris under salinity water. Materials and methodsPure stock culture of Chlorella Vulgaris was obtained from National Inland Water Aquaculture Institute Bandare Anzali, Iran and cultivated in Bold's Basal Medium (BBM). Culture of Chlorella vulgaris were individually cultivated in three (9.3 liter working volume) flat plate reactors(40*40*40) under three different EC; artificial seawater (EC34000 µS/cm) , distilled water (EC 3 µS/cm),natural water in study area (EC 1500 µS/cm).(measured by EC meter, Istek Model 915 PDC). The cultures were maintaining under a 12h dark/light photoperiod with 3500 Lx of illumination for 8 days. The average pH of natural water was 7.83 and hardness of 1000mg/l, the amount of carbonate and bicarbonate were 4 mg/l 339.7 and its electrical conductivity was 1500 µs/cm. The amount of initial dissolved CO2 was 8 ppm .Agitation and aeration were accomplished using air from a compressor with pressure of 0.12 MPa. All tests were taken on laboratory conditions and under ambient temperature so the temperature were 2531°C with an average temperature 28°C. Direct microscopic cellcount by Thoma haemocytometer was performed in this study using optical microscope. Microalgae dry weight (g /L) was measured by centrifuging 10 ml of each sample at 4500 RPM for 30 minutes and then washed with deionized water. Finally dried at105 °C for 40 minutes. After measuring the dry weight, the amount of biomass productivity (P), growth rate (µ) and carbon biofixation rate (R) would be achieved by using equation 13.Poverall (g /L/d= ((xtx0)/ (tt t0) (1)µ (day1) = (ln (xt/x0))/ (tt t0) (2) Rco2 (gCO2 L1 d1) =Cc P (mCO2 mC−1) (3)Where:Where xt and x0 were the biomass (g/ L) on days tt and t0, respectively . Cc is the carbon content of the microalgae cell (%, w/w) measured with elemental analyzer; mCO2 is the molecular weight of CO2; and mc is the molecular weight of carbon.Statistical analysisIn the present study, the raw data were stored in Ms Excel and then the relationship among biomass production, specific growth rate and biosequestration rate of CO2 with the different level of salinity were interpreted by Tukey analysis using SPSS (version 17) softwareResults and discussionNowadays The use of microalgae cultivation to reduce carbon dioxide has attracted a lot of intrests around the world, the higher rate of photosynthesis in these organisms rather than plants and crops is one of their and distinctive features. In the present study the pure stock culture of Chlorella vulgaris cultivated in Bold's Basal Medium was used. The microalgae were cultivated in 3 treatments and 3 replications containing pure water, artificial sea water and natural for 8 days. Lighting conditions provided for this test were periods of 12 h dark / light with light intensity of 3500 Lux.The results of maximum concentration of biomass, maximum specific growth rate and maximum CO2 fixation for the cultures under different EC are presented in Table 1.Table 1 the parameters of productivity, specific growth rate and carbon fixation rate of chlorella vulgaris during 8 days.Culture Biomass productivity (P)(g L1 d1 ) Specific growth rate (µ)(d1) Carbon fixation rate (R)(gCO2 L1 d1 ) 14 46 68 18 14 46 68 18 14 46 68 18Pure water)EC= 3 µs/cm) 0.090 0.020 0.028 0.057 0.266 0.035 0.045 0.15 0.148 0.033 0.045 0.093Artificial sea water)EC= 34000 µs/cm ) 0.033 0.010 0.025 0.025 0.025 0.007 0.018 0.019 0.053 0.016 0.041 0.041Natural water)EC=1500 µs/cm ) 0.078 0.050 0.065 0.068 0.182 0.077 0.085 0.131 0.127 0.082 0.107 0.111 As table 1 shows the biomass productivity of Chlorella sp. In pure water, artificial sea water and natural water was 0.057, 0.025 and 0068 g/L/d respectively that presented higher biomass productivity in natural water. Specific growth rate of 3 culture was 0.15, 0.019, and 0.13 (day1) respectively, which the lowest one belongs to artificial sea water (high salinity). Carbon fixation rate of 0.093, 0.041 and 0.111 g/L/d was observed in pure water, artificial sea water and natural water. Table 2 Average cell numbers of Chlorella vulgaris per liter counted during 8 days of cultivation8th day 6th day 4th day 1st day Cell counted (per Liter) Culture media 10*107 8*107 7*107 3*107 Pure wter6*107 5*107 5*107 3*107 Artificial sea water12*107 9*107 6*107 3*107 Natural waterAccording to table 2 the most number of cells were counted in natural waters at the end of the eighth day. In the artificial sea water because of the high salinity and inappropriate environment the cell growth and proliferation was slow, so that it shows the ability of carbon sequestration in the environment with high salinity was low.Tukey statistical results showed that there is significant differences at p≤0.05 between biomass production, growth rate, atmospheric carbon fixation rate, and also the number of cells in different salinity treatments. So amounts of salinity have resulted in different effects on the growth rate and carbon fixation rate.ConclusionDue to lack of enough fresh water sources, hot, dry climate of study area and inappropriate plants growing conditions, using microalgae is one the best solutions in order to stabilize greenhouse gases (carbon dioxide) and other applications such as the production of renewable fuels and medicinal uses. According to the results of present study, the maximum biomass and cell growth was observed in natural water able environment for freshwater microalgae, so the carbon sequestration potential of microalgae in the culture medium with high salinity is low. Despite being a fresh water microalgae, chlorella vulgaris presented high growth and fixation rate in natural water (EC=1500), so it could be cultivated in study area (South Khorasan, Birjand).Keywords: Birjand, Carbon sequestration, Chlorella vulgaris, greenhouse gases, Salinity water
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|