|
|
Temporal and spatial independent component analysis for fMRI data sets embedded in the analyzeFMRI R package
|
|
|
|
|
نویسنده
|
bordier c. ,dojat m. ,de micheaux p.l.
|
منبع
|
journal of statistical software - 2011 - دوره : 44 - - کد همایش: - صفحه:1 -24
|
چکیده
|
For statistical analysis of functional magnetic resonance imaging (fmri) data sets,we propose a data-driven approach based on independent component analysis (ica) implemented in a new version of the analyzefmri r package. for fmri data sets,spatial dimension being much greater than temporal dimension,spatial ica is the computationally tractable approach generally proposed. however,for some neuroscientific applications,temporal independence of source signals can be assumed and temporal ica becomes then an attractive exploratory technique. in this work,we use a classical linear algebra result ensuring the tractability of temporal ica. we report several experiments on synthetic data and real mri data sets that demonstrate the potential interest of our r package.
|
کلیدواژه
|
Magnetic resonance imaging; Multivariate analysis; Neuroimaging; Spatial ICA; Temporal ICA
|
آدرس
|
université joseph fourier,grenoble-institut des neurosciences,inserm u836 and université de grenoble,bâtiment: edmond j. safra,site santé 38706 la tronche, France, université joseph fourier,grenoble-institut des neurosciences,inserm u836 and université de grenoble,bâtiment: edmond j. safra,site santé 38706 la tronche, France, université de montréal,department of mathematics and statistics,montréal,qc, Canada
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|