>
Fa   |   Ar   |   En
   Hidden semi markov models for multiple observation sequences: the mhsmm package for R  
   
نویسنده o'connell j. ,hojsgaard s.
منبع journal of statistical software - 2011 - دوره : 39 - - کد همایش: - صفحه:1 -22
چکیده    This paper describes the r package mhsmm which implements estimation and prediction methods for hidden markov and semi-markov models for multiple observation sequences. such techniques are of interest when observed data is thought to be dependent on some unobserved (or hidden) state. hidden markov models only allow a geometrically distributed sojourn time in a given state,while hidden semi-markov models extend this by allowing an arbitrary sojourn distribution. we demonstrate the software with simulation examples and an application involving the modelling of the ovarian cycle of dairy cows.
کلیدواژه Duration density; EM algorithm; Hidden markov model; R; Sojourn time; Viterbi algorithm
آدرس wellcome trust centre for human genetics,university of oxford,roosevelt drive,oxford,ox3 7bn, United Kingdom, department of genetics and biotechnology,faculty of agricultural sciences,aarhus university,8830 tjele, Denmark
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved