>
Fa   |   Ar   |   En
   Iogcondens: Computations related to univariate log-concave density estimation  
   
نویسنده dümbgen l. ,rufibach k.
منبع journal of statistical software - 2011 - دوره : 39 - - کد همایش: - صفحه:1 -28
چکیده    Maximum likelihood estimation of a log-concave density has attracted considerable attention over the last few years. several algorithms have been proposed to estimate such a density. two of those algorithms,an iterative convex minorant and an active set algorithm,are implemented in the r package logcondens. while these algorithms are discussed elsewhere,we describe in this paper the use of the logcondens package and discuss functions and datasets related to log-concave density estimation contained in the package. in particular,we provide functions to (1) compute the maximum likelihood estimate (mle) as well as a smoothed log-concave density estimator derived from the mle,(2) evaluate the estimated density,distribution and quantile functions at arbitrary points,(3) compute the characterizing functions of the mle,(4) sample from the estimated distribution,and finally (5) perform a two-sample permutation test using a modified kolmogorov-smirnov test statistic. in addition,logcondens makes two datasets available that have been used to illustrate log-concave density estimation.
کلیدواژه Density estimation; Kolmogorov-Smirnov test; Log-concave; R
آدرس institute of mathematical statistics and actuarial science,university of bern,3012 bern, Switzerland, biostatistics unit,institute for social and preventive medicine,university of zurich,8001 zurich, Switzerland
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved