>
Fa   |   Ar   |   En
   A Bayesian analysis of unobserved component models using ox  
   
نویسنده bos c.s.
منبع journal of statistical software - 2011 - دوره : 41 - - کد همایش: - صفحه:1 -24
چکیده    This article details a bayesian analysis of the nile river flow data,using a similar state space model as other articles in this volume. for this data set,metropolis-hastings and gibbs sampling algorithms are implemented in the programming language ox. these markov chain monte carlo methods only provide output conditioned upon the full data set. for filtered output,conditioning only on past observations,the particle filter is introduced. the sampling methods are flexible,and this advantage is used to extend the model to incorporate a stochastic volatility process. the volatility changes both in the nile data and also in daily s&p 500 return data are investigated. the posterior density of parameters and states is found to provide information on which elements of the model are easily identifiable,and which elements are estimated with less precision.
کلیدواژه Bayes; State space methods; Stochastic volatility; Unobserved components
آدرس vu university amsterdam, Netherlands
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved