>
Fa   |   Ar   |   En
   Nonparametric regression via StatLSSVM  
   
نویسنده de brabanter k. ,suykens j.a.k. ,de moor b.
منبع journal of statistical software - 2013 - دوره : 55 - - کد همایش:
چکیده    We present a new matlab toolbox under windows and linux for nonparametric regression estimation based on the statistical library for least squares support vector machines (statlssvm). the statlssvm toolbox is written so that only a few lines of code are necessary in order to perform standard nonparametric regression,regression with correlated errors and robust regression. in addition,construction of additive models and pointwise or uniform confidence intervals are also supported. a number of tuning criteria such as classical cross-validation,robust cross-validation and cross-validation for correlated errors are available. also,minimization of the previous criteria is available without any user interaction.
کلیدواژه Asymptotic normality; Bimodal kernel; Correlated error; MATLAB; Nonparametric regression; Pointwise confidence interval; Reweighting; Robustness; Uniform confidence interval; Volume-of-tube-formula
آدرس iowa state university,department of statistics and computer science,2419 snedecor hall,ames,ia,50011-1210, United States, katholieke universiteit leuven,department of electrical engineering esat-stadius,kasteelpark arenberg 10,b-3001 leuven, Belgium, katholieke universiteit leuven,esat-stadius,iminds future health,kasteelpark arenberg 10,b-3001 leuven, Belgium
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved