>
Fa   |   Ar   |   En
   مشاهده نوسان‌های بسیار طولانی پیش‌شراره‌ای، برای دوازده شراره خورشیدی، به‌‌‌عنوان یک نشانه وقوع شراره  
   
نویسنده جلالی‌راد ملیحه ,فتحعلیان نرگس
منبع فيزيك زمين و فضا - 1401 - دوره : 48 - شماره : 2 - صفحه:347 -359
چکیده    شراره‌های خورشیدی طغیان‌های ناگهانی در جو خورشید هستند که تابش‌هایی در طول‌موج‌های رادیویی تا اشعه گاما دارند و با توجه به انرژی‌شان در کلاس‌های مختلف (به‌‌‌ترتیب a, b, c, m, x) طبقه‌بندی می‌شوند. پیش‌بینی زمان وقوع یک شراره و مشخص کردن نوع کلاس آن می‌تواند به کم‌کردن اثرات مخرب آن بر روی زمین کمک کند. یکی از فرایندهای پیش از وقوع شراره که می‌‌تواند به پیش‌بینی وقوع آن کمک کند نوسانات با دوره‌تناوب طولانی (vlp) در فاز پیش‌شراره است که نخستین بار توسط تان و همکاران (2016) گزارش شد.ما در این مقاله با استفاده از داده‌های ماهواره گوس (goes)، هجده شراره را به‌‌‌لحاظ وقوع vlpهای پیش شراره انتخاب و بررسی کردیم که 6 شراره در کلاس  cو 12 شراره در کلاس m هستند. از این میان در دوازده مورد از آنها vlpهای منظم را پیش از وقوع شراره مشاهده کردیم که به‌‌‌جز یکی بقیه در کلاس m بودند. دوره‌تناوبی که برای vlpهای این شراره ها با کمک تبدیل فوریه ی سریع، محاسبه کردیم 14 تا 28.9 دقیقه است که با نتایج تان و همکاران (2016) در توافق است. تعداد پالس های مشاهده‌ شده در هر پیش شراره بین 3 تا 7 عدد است. برای شش شراره دیگرِ باقی مانده از مجموعه منتخب ما، نیز vlp منظمی مشاهده نشد، که آنها به‌‌‌جز یک مورد همه در کلاس c بودند.
کلیدواژه شراره، فاز پیش‌شراره، پیش‌بینی وقوع شراره، نوسانات بسیار طولانی پیش‌شراره‌ای، داده‌های ماهواره گوس goes
آدرس دانشگاه پیام نور مرکز تهران, دانشکده فیزیک, ایران, دانشگاه پیام نور مرکز تهران, دانشکده فیزیک, ایران
پست الکترونیکی narges.fathalian@gmail.com
 
   Observing of Pre-flare Very Long-period Pulsations, for 12 Solar Flares, as a Sign of Flare’s Onset  
   
Authors Jalali Rad M. ,Fathalian N.
Abstract    Solar flares are sudden bursts in the solar atmosphere, which have emissions, from radio wavelengths up to gamma rays, and according to their energy are classified into different classes (A, B, C, M, and X, respectively). The process of releasing magnetic energy in flares is done by magnetic reconnection, which is often created by a complex magnetic field. Flares accelerate many electrons and ions, raising their energy to the limit of relative energy. These accelerating particles play a very important role in the release of large solar flare energies. Considering the fact that flares emit radiation when they explode, most of them create light spectrum and sometimes Xrays and ultraviolet rays, which are emitted mainly by the photosphere and chromosphere into concentrated sources called footpoints and ribbons. These radiations and emissions occur when the lower layers of the sun’s atmosphere heat up during a flare, and this heating due to the collision of particles probably plays an important role in the occurrence of the flare. In addition, they emit highenergy radiation such as hard Xrays (HXR) from electrons and gamma rays from ions. The main part of these emissions is in the form of electromagnetic emission (soft Xrays) and energetic particles. Emissions radiated from a large flare or a solar mass eruption (with an energy more than J), when reaching the earth, can have destructive effects on the Earth’s atmosphere, as well as the orbits of satellites or magnetic and electrical facilities of devices like ships and airplanes. Therefore, predicting the time of the flare occurrence and determining its class type can help reduce these destructive effects.One of the observable structures that can be seen before a flare occurs, are oscillations with very long period pulsations (VLPs) of the order of 830 minutes, which occur about one to two hours before the flare onset, and were first reported by Tan et al. (2016) in the preflare phase. MHD oscillations and longitudinal electric current in flare loops can be appropriate candidates to explain the formation of VLPs. Investigating preflare VLPs can also help us in understanding the origin of flares. With the help of observational data of Xray radiation (SXR), onboard the GOES satellite, during the preflare phase, these pulses can be observed at similar time scales during flare processes.In this paper, using the abovementioned data, we selected eighteen flares for the study of which 6 flares are in class C and 12 flares are in class M. Of these, twelve had typical VLPs before flareonset, which were all in the M class, with the exception of one. The periodicity that we calculated for the VLPs of these flares, with the help of the Fast Fourier Transform is 14 to 28.9 minutes, which is in agreement with the results of Tan et al. (2016). The number of pulses observed in each preflare is between 3 and 7. For the other six remaining flares of our selection, no typical preflare VLP was observed, which all but one of them, were in class C.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved