>
Fa   |   Ar   |   En
   Stability of Non-constant Equilibrium Solutions for Bipolar Full Compressible Navier–Stokes–Maxwell Systems  
   
نویسنده Xin Li ,Shu Wang ,Yue-Hong Feng
منبع journal of nonlinear science - 2018 - دوره : 28 - شماره : 6 - صفحه:2187 -2215
چکیده    we study the stability of smooth solutions near non-constant equilibrium states for a bipolar full compressible navier–stokes–maxwell system in a three-dimensional torus (mathbb {t}= (mathbb {r}/mathbb {z})^3). this system is quasilinear hyperbolic-parabolic. in the first part, by using the maximum principle, we find a non-constant steady state solution with small amplitude for this system. in the second part, with the help of suitable choices of symmetrizers and classic energy estimates, we prove that global smooth solutions exist and converge to the non-constant steady states as the time goes to infinity. as a byproduct, we obtain the global stability for the bipolar full compressible navier–stokes–poisson system.
کلیدواژه Bipolar full Navier–Stokes–Maxwell system ,Non-constant equilibrium solutions ,Global smooth solutions 35L45 ,35L60 ,35Q60
آدرس Beijing University of Technology, China, Beijing University of Technology, China, Beijing University of Technology, China
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved