>
Fa   |   Ar   |   En
   Age exacerbates microglial activation,oxidative stress,inflammatory and NOX2 gene expression,and delays functional recovery in a middle-aged rodent model of spinal cord injury  
   
نویسنده von leden r.e. ,khayrullina g. ,moritz k.e. ,byrnes k.r.
منبع journal of neuroinflammation - 2017 - دوره : 14 - شماره : 1
چکیده    Background: spinal cord injury (sci) among people over age 40 has been steadily increasing since the 1980s and is associated with worsened outcome than injuries in young people. age-related increases in reactive oxygen species (ros) are suggested to lead to chronic inflammation. the nadph oxidase 2 (nox2) enzyme is expressed by microglia and is a primary source of ros. this study aimed to determine the effect of age on inflammation,oxidative damage,nox2 gene expression,and functional performance with and without sci in young adult (3months) and middle-aged (12months) male rats. methods: young adult and middle-aged rats were assessed in two groups-naïve and moderate contusion sci. functional recovery was determined by weekly assessment with the basso,beattie,and breshnahan general motor score (analyzed two-way anova) and footprint analysis (analyzed by chi-square analysis). tissue was analyzed for markers of oxidative damage (8-ohdg,oxyblot,and 3-nt),microglial-related inflammation (iba1),nox2 component (p47phox,p22phox,and gp91phox),and inflammatory (cd86,cd206,tnfα,and nfκb) gene expression (all analyzed by unpaired student's t test). results: in both naïve and injured aged rats,compared to young rats,tissue analysis revealed significant increases in 8-ohdg and iba1,as well as inflammatory and nox2 component gene expression. further,injured aged rats showed greater lesion volume rostral and caudal to the injury epicenter. finally,injured aged rats showed significantly reduced basso-beattie-bresnahan (bbb) scores and stride length after sci. conclusions: these results show that middle-aged rats demonstrate increased microglial activation,oxidative stress,and inflammatory gene expression,which may be related to elevated nox2 expression,and contribute to worsened functional outcome following injury. these findings are essential to elucidating the mechanisms of age-related differences in response to sci and developing age-appropriate therapeutics. © 2017 the author(s).
کلیدواژه Aging; Inflammation; Microglia; NOX2; Spinal cord injury
آدرس uniformed services university,neuroscience program,4301 jones bridge road,bethesda,md 20814,united states,uniformed services university,department of anatomy,physiology,and genetics,room c2099,4301 jones bridge road,bethesda,md 20814, United States, uniformed services university,neuroscience program,4301 jones bridge road,bethesda,md 20814,united states,uniformed services university,department of anatomy,physiology,and genetics,room c2099,4301 jones bridge road,bethesda,md 20814, United States, uniformed services university,neuroscience program,4301 jones bridge road,bethesda,md 20814, United States, uniformed services university,neuroscience program,4301 jones bridge road,bethesda,md 20814,united states,uniformed services university,department of anatomy,physiology,and genetics,room c2099,4301 jones bridge road,bethesda,md 20814, United States
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved