>
Fa   |   Ar   |   En
   Gait speed using powered robotic exoskeletons after spinal cord injury: A systematic review and correlational study  
   
نویسنده louie d.r. ,eng j.j. ,lam t.
منبع journal of neuroengineering and rehabilitation - 2015 - دوره : 12 - شماره : 1
چکیده    Powered robotic exoskeletons are an emerging technology of wearable orthoses that can be used as an assistive device to enable non-ambulatory individuals with spinal cord injury (sci) to walk,or as a rehabilitation tool to improve walking ability in ambulatory individuals with sci. no studies to date have systematically reviewed the literature on the efficacy of powered exoskeletons on restoring walking function. our objective was to systematically review the literature to determine the gait speed attained by individuals with sci when using a powered exoskeleton to walk,factors influencing this speed,and characteristics of studies involving a powered exoskeleton (e.g. inclusion criteria,screening,and training processes). a systematic search in computerized databases was conducted to identify articles that reported on walking outcomes when using a powered exoskeleton. individual gait speed data from each study was extracted. pearson correlations were performed between gait speed and 1) age,2) years post-injury,3) injury level,and 4) number of training sessions. fifteen articles met inclusion criteria,14 of which investigated the powered exoskeleton as an assistive device for non-ambulatory individuals and one which used it as a training intervention for ambulatory individuals with sci. the mean gait speed attained by non-ambulatory participants (n∈=∈84) while wearing a powered exoskeleton was 0.26 m/s,with the majority having a thoracic-level motor-complete injury. twelve articles reported individual data for the non-ambulatory participants,from which a positive correlation was found between gait speed and 1) age (r∈=∈0.27,95 % ci 0.02-0.48,p∈=∈0.03,63 participants),2) injury level (r∈=∈0.27,95 % ci 0.02-0.48,p∈=∈0.03,63 participants),and 3) training sessions (r∈=∈0.41,95 % ci 0.16-0.61,p∈=∈0.002,55 participants). in conclusion,powered exoskeletons can provide non-ambulatory individuals with thoracic-level motor-complete sci the ability to walk at modest speeds. this speed is related to level of injury as well as training time. © 2015 louie et al.
آدرس university of british columbia,vancouver,canada,rehabilitation research program,4255 laurel street,vancouver,bc v5z 2g9,canada,vancouver coastal health research institute,vancouver, Canada, university of british columbia,vancouver,canada,rehabilitation research program,4255 laurel street,vancouver,bc v5z 2g9,canada,vancouver coastal health research institute,vancouver,canada,international collaboration on repair discoveries,818 west 10th avenue,vancouver,bc v5z 1m9,canada,department of physical therapy,university of british columbia,212-2177 wesbrook mall,vancouver,bc v6t 1z3, Canada, university of british columbia,vancouver,canada,international collaboration on repair discoveries,818 west 10th avenue,vancouver,bc v5z 1m9, Canada
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved