|
|
MicroRNA-223 controls the expression of histone deacetylase 2: a novel axis in COPD
|
|
|
|
|
نویسنده
|
Leuenberger Caroline ,Schuoler Claudio ,Bye Hannah ,Mignan Célia ,Rechsteiner Thomas ,Hillinger Sven ,Opitz Isabelle ,Marsland Benjamin ,Faiz Alen ,Hiemstra Pieter S. ,Timens Wim ,Camici Giovanni G. ,Kohler Malcolm ,Huber Lars C. ,Brock Matthias
|
منبع
|
journal of molecular medicine - 2016 - دوره : 94 - شماره : 6 - صفحه:725 -734
|
چکیده
|
Reduced activity of histone deacetylase 2 (hdac2) has been described in patients with chronic obstructive pulmonary disease (copd), but the mechanisms resulting in decreased expression of this important epigenetic modifier remain unknown. here, we employed several in vitro experiments to address the role of micrornas (mirnas) on the regulation of hdac2 in endothelial cells. manipulation of mirna levels in human pulmonary artery endothelial cells (hpaec) was achieved by using electroporation with anti-mirnas and mirna mimics. target prediction software identified mir-223 as a potential repressor of hdac2. in subsequent stimulation experiments using inflammatory cytokines known to be increased in patients with copd, mir-223 was found to be significantly induced. functional analysis demonstrated that overexpression of mir-223 decreased hdac2 expression and activity in hpaec. conversely, hdac2 expression and activity was preserved in anti-mir-223-treated cells. direct mirna-target interaction was confirmed by reporter gene assay. in a next step, reduced expression of hdac2 was found to increase the levels of the chemokine fractalkine (cx3cl1). in vivo studies confirmed elevated expression levels of mir-223 in mice exposed to cigarette smoke and in emphysematous lung tissue from lps-treated mice. moreover, a significant inverse correlation of mir-223 and hdac2 expression was found in two independent cohorts of copd patients. these data emphasize that mir-223, the most prevalent mirna in copd, controls expression and activity of hdac2 in pulmonary cells, which, in turn, might alter the expression profile of chemokines. this pathway provides a novel pathogenic link between dysregulated mirna expression and epigenetic activity in copd.
|
کلیدواژه
|
Chronic obstructive pulmonary disease ,microRNA ,Inflammation ,Histone deacetylase 2
|
آدرس
|
University of Zurich, Division of Pulmonology, Switzerland, University Hospital Zurich, University of Zurich, Division of Pulmonology, Switzerland. University of Zurich and Zurich Center for Integrative Human Physiology (ZIHP), Switzerland, University Hospital Zurich, University of Zurich, Division of Pulmonology, Switzerland, University Hospital Zurich, University of Zurich, Division of Pulmonology, Switzerland, University Hospital Zurich, University of Zurich, Division of Pulmonology, Switzerland, University Hospital Zurich, University of Zurich, Division of Thoracic Surgery, Switzerland, University Hospital Zurich, University of Zurich, Division of Thoracic Surgery, Switzerland, University of Lausanne, Switzerland, University Medical Center Groningen, University of Groningen, Department of Pulmonary Diseases, The Netherlands, Leiden University Medical Center, Department of Pulmonary Diseases, The Netherlands, University Medical Center Groningen, University of Groningen, Department of Pathology and Medical Biology, The Netherlands, University Hospital of Zurich, University of Zurich, Division of Cardiology, Switzerland, University Hospital Zurich, University of Zurich, Division of Pulmonology, Switzerland, University Hospital Zurich, University of Zurich, Division of Pulmonology, Switzerland, University Hospital Zurich, University of Zurich, Division of Pulmonology, Switzerland
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|