|
|
مقایسه روشهای طبقهبندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربریهای اراضی از تصاویر ماهوارهای لندست tm
|
|
|
|
|
نویسنده
|
مختاری محمدحسین ,نجفی احمد
|
منبع
|
علوم آب و خاك - 1394 - دوره : 19 - شماره : 2 - صفحه:35 -44
|
چکیده
|
طبقهبندی و تهیه نقشه کاربریهای اراضی یکی از پرکاربردترین موارد در استفاده از دادههای سنجش از دور است. تعدادی از روشهای پیشرفتهتر طبقهبندی در دهههای گذشته توسعه پیداکردهاند که از آنها میتوان به شبکههای عصبی مصنوعی و ماشین بردار پشتیبان اشاره کرد. در این مطالعه از تصاویر لندستtm باقدرت تفکیک 30 متر جهت استخراج کاربریهای اراضی با استفاده از دو روش طبقهبندی شبکه عصبی مصنوعی و ماشین بردار پشتیبان اقدام شد. نتایج، دقت بالای طبقهبندیهای شبکه عصبی و ماشین بردار پشتیبان با کرنل شعاعی، هر کدام بهترتیب با دقت کلی 67/90 و 67/91 درصد را نشان داد. ماشین بردار پشتیبان کلاسهایی را که دارای خصوصیات طیفی مشترک بودند بهتر تفکیک کرد. همچنین در قسمتهای مرزی دو نوع کاربری، ماشین بردار پشتیبان قابلیت جداسازی بهتری نسبت به شبکه عصبی داشت و مرز بین دو کلاس ملموس تر بود. با توجه به نتایج گرفته شده، هر دو روش شبکه عصبی و ماشین بردار پشتیبان برای طبقهبندی کاربریهای اراضی خوب بوده، اما روش ماشین بردار پشتیبان با اختلاف 1 درصد در دقت کلی و 2درصد در ضریب کاپا بهتر بود. دقت بالای ماشین بردار پشتیبان میتواند ناشی از مرز تصمیمگیری بهینه آن باشد درحالیکه شبکه عصبی نمیتواند این مرز را ایجاد کند.
|
کلیدواژه
|
سنجش از دور، کاربری اراضی، طبقه بندی، شبکه عصبی مصنوعی، ماشین بردار پشتیبان
|
آدرس
|
دانشگاه یزد, گروه منابع طبیعی و کویرشناسی, ایران, دانشگاه یزد, دانشکده منابع طبیعی و کویرشناسی, گروه جنگل داری, ایران
|
|
|
|
|
|
|
|
|
|
|
Comparison of Support Vector Machine and Neural Network Classification Methods in Land Use Information Extraction through Landsat TM Data
|
|
|
Authors
|
Mokhtari M. ,Najafi A.
|
Abstract
|
Land use classification and mapping mostly use remotely sensed data. During the past decades, several advanced classification methods such as neural network and support vector machine (SVM) have been developed. In the present study, Landsat TM images with 30m spatial resolution were used to classify land uses through two classification methods including support vector machine and neural network. The results showed that SVM and neural network with the total accuracy of 90.67 % and 91.67% are superior. SVM had a better performance in separating classes with similar spectral profiles. In addition, SVM showed a better performance in delineating class borders in comparison with neural network method. In summary, both SVM and neural network showed satisfactory results but the method of support vector machine proved better with a difference of 1% and 2% in overall accuracy and kappa coefficient, respectively. This was an expected outcome because SVMs are designed to locate an optimal separating hyperplane, while ANNs may not be able to locate this separating hyperplane.
|
Keywords
|
Remote sensing ,land use ,classification ,neural network ,support vector machine.
|
|
|
|
|
|
|
|
|
|
|