|
|
بهینهسازی مدل برنامهریزی بیان ژن توسط تبدیل موجک برای شبیهسازی بارش درازمدت شهر انزلی
|
|
|
|
|
نویسنده
|
حیاتی فرشاد ,رجبی احمد ,ایزدبخش محمد علی ,شعبانلو سعید
|
منبع
|
علوم آب و خاك - 1400 - دوره : 25 - شماره : 1 - صفحه:27 -42
|
چکیده
|
تخمین و شبیهسازی روند بارندگی در نواحی مختلف جهان بهدلیل خشکسالی و تغییر اقلیم از اهمیت فراوانی برخوردار است. در این مطالعه، یک مدل هوش مصنوعی ترکیبی برنامهریزی بیان ژن موجک (wgep) برای مدلسازی بارندگی درازمدت 67 ساله شهر انزلی برای اولین بار توسعه داده شد. این مدل از ترکیب تبدیل موجک (wavelet) و برنامهریزی بیان ژن (gep) بهدست آمد. در ابتدا، بهینهترین عضو خانواده تبدیل موجک معرفی شد. سپس با تجزیه و تحلیل نتایج مدلسازی، دقیقترین تابع اتصال و برازش برای مدل برنامهریزی بیان ژن بهدست آمد. در ادامه، با استفاده از تابع خودهمبستگی و خودهمبستگی نسبی و تاخیرهای مختلف، 15 مدل wgep توسعه داده شد. مدلهای wgep برای بازههای زمانی 37، 20 و 10 ساله بهترتیب آموزش، آزمون و صحتسنجی شدند. همچنین، با انجام تحلیل حساسیت، مدل برتر و موثرترین تاخیرها برای شبیهسازی بارش درازمدت شناسایی شدند. مدل برتر مقادیر تابع هدف را با دقت بالایی تخمین زد. بهعنوان مثال، مقادیر ضریب همبستگی و شاخص پراکندگی برای این مدل در شرایط صحتسنجی بهترتیب برابر با 0/946 و 0/310 محاسبه شدند. علاوه بر این، تاخیرهای شماره 1، 2، 4 و 12 بهعنوان موثرترین تاخیرها در مدلسازی بارش توسط مدل ترکیبی معرفی شدند. همچنین، نتایج مدل برتر ترکیبی با مدل برنامهنویسی بیان ژن مقایسه شد که مدل ترکیبی دقت بیشتری داشت.
|
کلیدواژه
|
مدل ترکیبی، بارندگی، سری زمانی، شبیهسازی، تحلیل حساسیت
|
آدرس
|
دانشگاه آزاد اسلامی واحد کرمانشاه, گروه مهندسی آب, ایران, دانشگاه آزاد اسلامی واحد کرمانشاه, گروه مهندسی آب, ایران, دانشگاه آزاد اسلامی واحد کرمانشاه, گروه مهندسی آب, ایران, دانشگاه آزاد اسلامی واحد کرمانشاه, گروه مهندسی آب, ایران
|
پست الکترونیکی
|
saeid.shabanlou@gmail.com
|
|
|
|
|
|
|
|
|
Optimization of Gene Expression Programming Model using Wavelet Transform for Simulating Long-term Rainfall in Anzali City
|
|
|
Authors
|
Hayati F. ,Rajabi A. ,Izadbakhsh M. ,Shabanlou S.
|
Abstract
|
Due to drought and climate change, estimation and prediction of rainfall is quite important in various areas all over the world. In this study, a novel artificial intelligence (AI) technique (WGEP) was developed to model longterm rainfall (67 years period) in Anzali city for the first time. This model was combined using Wavelet Transform (WT) and Gene Expression Programming (GEP) model. Firstly, the most optimized member of wavelet families was chosen. Then, by analyzing the numerical models, the most accurate linking function and fitness function were selected for the GEP model. Next, using the autocorrelation function (ACF), the partial autocorrelation function (PACF) and different lags, 15 WGEP models were introduced. The GEP models were trained, tested and validated in 37, 20 and 10years periods, respectively. Also, using sensitivity analysis, the superior model and the most effective lags for estimating longterm rainfall were identified. The superior model estimated the target function with high accuracy. For instance, correlation coefficient and scatter index for this model were 0.946 and 0.310, respectively. Additionally, lags 1, 2, 4 and 12 were proposed as the most effective lags for simulating rainfall using hybrid model. Furthermore, results of the superior hybrid model were compared with GEP model that the hybrid model had more accuracy.
|
Keywords
|
Hybrid model ,Rainfall ,Time series ,Simulation ,Sensitivity analysis
|
|
|
|
|
|
|
|
|
|
|