|
|
ارزیابی روشهای یادگیری ماشین در نقشهبرداری رقومی کربن آلی خاکهای زراعی (بخشی از دشت خرمآباد)
|
|
|
|
|
نویسنده
|
متین فر حمید رضا ,مقصودی زیبا ,موسوی روح الله ,جلالی محبوبه
|
منبع
|
علوم آب و خاك - 1399 - دوره : 24 - شماره : 4 - صفحه:327 -342
|
چکیده
|
شناخت توزیع مکانی کربن آلی خاک یکی از ابزارهای کاربردی در تعیین استراتژیهای مدیریت پایدار اراضی است. طی دو دهه اخیر استفاده از رویکردهای دادهکاوی در مدلسازی مکانی کربن آلی خاک با استفاده از تکنیکهای یادگیری ماشین بهطور گستردهای مورد توجه قرار گرفته است. یکی از گامهای اساسی در کاربرد این روشها، تعیین متغیرهای بهینه پیشبینی کننده کربن آلی خاک است. این مطالعه بهمنظور مدلسازی و نقشهبرداری رقومی کربن آلی خاک سطحی با استفاده از روشهای یادگیری ماشین و ویژگیهای خاک شامل درصد سیلت، رس، شن، کربنات کلسیم معادل، میانگین وزنی قطر خاکدانه و اسیدیته انجام پذیرفت. بدین منظور دقت عملکرد مدلهای جنگل تصادفی، کوبیست، رگرسیون حداقل مربعات جزئی، رگرسیون خطی چندمتغیره و کریجینگ معمولی برای برآورد میزان کربن آلی خاک سطحی، در 141 نمونه از عمق 30-0 سانتیمتر در بخشی از اراضی کشاورزی دشت خرم آباد با مساحت 680 هکتار مورد ارزیابی قرار گرفتند. نتایج آنالیز حساسیت متغیرهای پیشران در مدلسازی کربن آلی نشان داد که بهترتیب سه ویژگی درصد سیلت، آهک و میانگین وزنی قطر خاکدانه بیشترین تاثیر را روی تغییرپذیری مکانی کربن آلی خاک داشتند. همچنین مقایسه رویکردهای مختلف تخمین کربن آلی نشان داد که مدل جنگل تصادفی بهترتیب با مقادیر ضریب تبیین (r2) و مجذور میانگین مربعات خطا (rmse) 0/75 و 0/25 درصد بهترین کارایی را نسبت به سایر رویکردهای مورد استفاده در منطقه مطالعاتی ارائه کرد. در مجموع مدلهای با رویکرد غیرخطی صحت بالاتری نسبت به مدلهای خطی در مدلسازی تغییرات مکانی کربن آلی خاک نشان دادند.
|
کلیدواژه
|
تغییرپذیری مکانی، نقشهبرداری رقومی خاک، روشهای مدلسازی، پیشبینی کربن آلی
|
آدرس
|
دانشگاه لرستان, دانشکده کشاورزی, گروه علوم و مهندسی خاک, ایران, دانشگاه لرستان, دانشکده کشاورزی, گروه علوم و مهندسی خاک, ایران, دانشگاه تهران، پردیس کشاورزی و منابع طبیعی, دانشکده مهندسی و فناوری کشاورزی, گروه علوم و مهندسی خاک, ایران, دانشگاه لرستان, دانشکده کشاورزی, گروه علوم و مهندسی خاک, ایران
|
|
|
|
|
|
|
|
|
|
|
Evaluation of Machine Learning Methods in Digital Mapping of Soil Organic Carbon (part of Khorramabad Plain)
|
|
|
Authors
|
Matinfar H. R. ,Mghsodi Z. ,Mossavi S. R. ,Jalali M.
|
Abstract
|
Knowledge about the spatial distribution of soil organic carbon (SOC) is one of the practical tools in determining sustainable land management strategies. During the last two decades, the utilization of data mining approaches in spatial modeling of SOC using machine learning algorithms have been widely taken into consideration. The essential step in applying these methods is to determine the environmental predictors of SOC optimally. This research was carried out for modeling and digital mapping of surface SOC aided by soil properties ie., silt, clay, sand, calcium carbonate equivalent percentage, mean weight diameter (MWD) of aggregate, and pH by machine learning methods. In order to evaluate the accuracy of random forest (RF), cubist, partial least squares regression, multivariate linear regression, and ordinary kriging models for predicting surface SOC in 141 selected samples from 030 cm in 680 hectares of agricultural land in Khorramabad plain. The sensitivity analysis showed that silt (%), calcium carbonate equivalent, and MWD are the most important driving factors on spatial variability of SOC, respectively. Also, the comparison of different SOC prediction models, demonstrated that the RF model with a coefficient of determination (R2) and root mean square error (RMSE) of 0.75 and 0.25%, respectively, had the best performance rather than other models in the study area. Generally, nonlinear models rather than linear ones showed higher accuracy in modeling the spatial variability of SOC.
|
Keywords
|
Spatial variability ,Digital soil mapping ,Modeling approaches ,SOC prediction.
|
|
|
|
|
|
|
|
|
|
|