|
|
An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm
|
|
|
|
|
نویسنده
|
Tsai Kuo-Ming ,Luo Hao-Jhih
|
منبع
|
journal of intelligent manufacturing - 2017 - دوره : 28 - شماره : 2 - صفحه:473 -487
|
چکیده
|
This study combined the artificial neural network (ann) with a genetic algorithm (ga) to establish an inverse model of injection molding for optical lens form accuracy. the taguchi parameter design was used for screening experiments of the injection molding parameters, and the significant factors influencing lens form accuracy were found to be mold temperature, cooling time, packing pressure, and packing time. these significant factors were used for full factorial experiments, and the experimental data then were used as training and checking data sets for the ann prediction model. finally, the ann prediction model was combined with the ga to construct an inverse model of injection molding. lens form accuracies of 0.5, 0.7, and $$1,upmu hbox {m}$$ were taken as examples for validation, and when the error of the set lens form accuracy target value was within 2 % there were 26, 17, and six sets of the injection molding parameters, respectively, that met the desired form accuracy obtained by using the inverse model. the result indicated that the proposed strategy was successful in identifying process parameters for products with reliable accuracy. in addition, using the ga as a global search algorithm for the optimal solution could further optimize the taguchi optimal process parameters. the validation experiments revealed that the form accuracy of the lens was improved.
|
کلیدواژه
|
Inverse model ,Artificial neural network (ANN) ,Genetic algorithm (GA) ,Injection molding ,Optical lens ,Taguchi method
|
آدرس
|
National Chin-Yi University of Technology, Department of Mechanical Engineering, China, National Chin-Yi University of Technology, Department of Mechanical Engineering, China
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|