>
Fa   |   Ar   |   En
   Bioactive nanofibrous scaffolds for regenerative endodontics  
   
نویسنده bottino m.c. ,kamocki k. ,yassen g.h. ,platt j.a. ,vail m.m. ,ehrlich y. ,spolnik k.j. ,gregory r.l.
منبع journal of dental research - 2013 - دوره : 92 - شماره : 11 - صفحه:963 -969
چکیده    Here we report the synthesis,materials characterization,antimicrobial capacity,and cytocompatibility of novel antibiotic-containing scaffolds. metronidazole (met) or ciprofloxacin/(cip) was mixed with a polydioxanone (pds)polymer solution at 5 and 25 wt% and processed into fibers. pds fibers served as a control. scanning electron microscopy (sem),fourier-transform infrared spectroscopy (ftir),tensile testing,and high-performance liquid chromatography (hplc) were used to assess fiber morphology,chemical structure,mechanical properties,and drug release,respectively. antimicrobial properties were evaluated against those of porphyromonas gingivalis/pg and enterococcus faecalis/ef. cytotoxicity was assessed in human dental pulp stem cells (hdpscs). statistics were performed,and significance was set at the 5% level. sem imaging revealed a submicron fiber diameter. ftir confirmed antibiotic incorporation. the tensile values of hydrated 25 wt% cip scaffold were significantly lower than those of all other groups. analysis of hplc data confirmed gradual,sustained drug release from the scaffolds over 48 hrs. cip-containing scaffolds significantly (p <.00001) inhibited biofilm growth of both bacteria. conversely,met-containing scaffolds inhibited only pg growth. agar diffusion confirmed the antimicrobial properties against specific bacteria for the antibiotic-containing scaffolds. only the 25 wt% cip-containing scaffolds were cytotoxic. collectively,this study suggests that polymer-based antibiotic-containing electrospun scaffolds could function as a biologically safe antimicrobial drug delivery system for regenerative endodontics. © international & american associations for dental research.
کلیدواژه disinfection; double antibiotic; electrospinning; nanofibers; regeneration; triple antibiotic
آدرس department of restorative dentistry,division of dental biomaterials,indiana university school of dentistry (iusd),indianapolis,in 46202, United States, department of restorative dentistry,division of dental biomaterials,indiana university school of dentistry (iusd),indianapolis,in 46202, United States, department of restorative dentistry,division of dental biomaterials,indiana university school of dentistry (iusd),indianapolis,in 46202,united states,department of pediatric,orthodontic,and preventative dentistry,mosul university,school of dentistry,mosul, Iraq, department of restorative dentistry,division of dental biomaterials,indiana university school of dentistry (iusd),indianapolis,in 46202, United States, department of endodontics,indiana university school of dentistry (iusd),indianapolis,in 46202, United States, department of endodontics,indiana university school of dentistry (iusd),indianapolis,in 46202, United States, department of endodontics,indiana university school of dentistry (iusd),indianapolis,in 46202, United States, department of oral biology,indiana university school of dentistry (iusd),indianapolis,in 46202, United States
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved