>
Fa   |   Ar   |   En
   بررسی عدم قطعیت مدل‌های هوش مصنوعی در تصفیه‌خانه فاضلاب شهر تبریز  
   
نویسنده شهیدی زنوز رضا ,نورانی وحید ,دینی مهدی
منبع آب و فاضلاب - 1401 - دوره : 33 - شماره : 5 - صفحه:52 -66
چکیده    در این پژوهش، عدم قطعیت مرتبط با مدل‌سازی مبتنی بر هوش مصنوعی تصفیه‌خانه فاضلاب تبریز با داده‌های روزانه برای بررسی کارایی آن برای کنترل تغییرات مربوط به شاخص‌های bod وcod واحد لجن فعال، بررسی شد. داده‌ها به‌صورت روزانه طی سال‌های 2015 تا 2020 گردآوری و با استفاده از معیار ضریب هم‌بستگی انتخاب شدند. tssi، tdsi، vssi، phi به همراه bode و code با تاخیر زمانی یک روزه به‌عنوان ورودی و bode و code برای خروجی مدل‌ها در نظر گرفته شدند. محاسبات در دو مدل شبکه عصبی پیش‌خور به‌صورت پیش‌بینی نقطه‌ای و روش برآورد حد بالا و پایین برای ارائه فاصله پیش‌بینی با اعمال عدم قطعیت‌ها انجام شد. روش lube، برخلاف روش‌های کلاسیک محاسبه pi، بدون نیاز به اطلاعات درباره توزیع داده‌ها به برآورد pi می‌پردازد. در این روش ffnn با دو خروجی که نشان‌دهنده حد بالا و پایین پیش‌بینی است، آموزش داده می‌شود. ارزیابی picp و مقایسه آن با مقدار μ سبب تساوی مقدار γ با صفر شده که در ادامه روند محاسباتی موجب استخراج عرض هم‌گرایی با حداقل میزان ممکن و تولید pi برای داده‌های محاسباتی و مشاهداتی با امکان کنترل تغییرات تصادفی در بخش لجن فعال را میسر می‌سازد. بنابراین هم‌گرایی روش lube به‌طور موثر توانایی کنترل عدم ‌قطعیت بین متغیرهای بخش بیولوژیکی لجن فعال با استفاده از pi را دارد. زمان لازم برای ساخت pi، به‌طور قابل ملاحظه‌ای اندک است. استفاده از روش lube منجر به ارائه یک بازه پیش‌بینی شامل عدم قطعیت‌های محاسباتی و مشاهداتی می‌شود. نتایج عددی نشان‌دهنده موفقیت تقریبی 99 درصد در محاسبات و پوشش عدم ‌قطعیت‌های مدل‌سازی است. ارائه بازه نوسانی از عدم قطعیت‌ها، کمکی شایان برای بهبود شرایط اقتصادی و همین ‌طور کاهش زمان کنترل لجن فعال و رصد بهتر تصفیه‌خانه می‌تواند باشد. با وجود معیار طراحی برای bode، به میزان 20 میلی‌گرم در لیتر، نتایج pi نشان‌دهنده تامین 12 درصد شاخص طراحی بوده، ولی با توجه به تامین 88 درصد مابقی از لحاظ استاندارد کیفی برای کاربری پساب‌ها و آبهای برگشتی طبق نشریه 535 معاونت نظارت راهبردی به میزان 31 میلی‌گرم در لیتر، نشان‌دهنده عملکرد مناسب تصفیه‌خانه در بخش لجن فعال است. روش lube روشی کارآمد بوده، به‌طوری که با ارائه بازه‌ای بهینه شده از نوسانات برای داده‌های محاسباتی، کوچکترین تغییرات ناهنجار در بخش لجن فعال برای کنترل میزان غذای میکروارگانیسم‌های موجود در این بخش و همین‌ طور شاخص‌های آلایندگی را با کمترین زمان محاسباتی گزارش می‌کند. همچنین با توجه به گرانی خود لجن فعال در بخش تصفیه فاضلاب از منظر اقتصادی نیز کمکی شایسته در کاهش هزینه‌ها کرده و با توجه به رفتار غیرخطی باکتری‌ها در زمان کاهش غذا و همین‌ طور کنترل مرگ‌و‌میر ناشی از کاهش غذا می‌تواند ابزاری بسیارکارآمد تلقی شود.
کلیدواژه تصفیه‌خانه فاضلاب تبریز، واحد لجن فعال، عدم قطعیت، فاصله پیش‌بینی، حد بالا و پایین
آدرس دانشگاه تبریز, دانشکده مهندسی عمران, گروه عمران آب و محیط‌زیست, ایران, دانشگاه تبریز, دانشکده مهندسی عمران, گروه عمران آب و محیط‌زیست, ایران, دانشگاه شهید مدنی آذربایجان, دانشکده فنی و مهندسی, گروه مهندسی عمران, ایران
پست الکترونیکی m.dini@azaruniv.ac.ir
 
   investigation of uncertainty to artificial intelligence models in tabriz wastewater treatment plant  
   
Authors shahidi zonouz r. ,nourani v. ,dini m.
Abstract    in this paper, the uncertainty of artificial intelligence models for evaluting performance of the activated sludge unit of the tabriz treatment plant is assessed. in this regard, daily data of pollution parameters, particularly biochemical oxygen demand and chemical oxygen demand, are utilized. all data were collected daily during the years (2015-2020) and the best parameters were selected using the correlation coefficient criterion. the tssi, tdsi, vssi, phi parameters and also, bode and code with a one-day delay were selected as model input and bode and code were selected as model output. the calculations of uncertainties were performed in two models of feed forward neural network as point prediction and lower upper bound estimation method to provide the prediction interval. the lube method, unlike the classical methods of calculating pi, estimates pi without the need for data distribution information. in this method, the ffnn was trained with two outputs indicating the upper and lower limits of the prediction. picp assessment and comparing it with μ values, caused γ values to equal zero that, in the continuation of the calculation process caused cwc extraction with the minimum possible amount and production of pi for computational data and observations with the possibility of controlling random changes in the activated sludge section. so, the convergence of the lube method has the ability to effectively control the uncertainty between the parameters of the biological section of activated sludge using pi. the time required to build pi is considerably short. numerical results show approximately 99% success in calculations and coverage of modeling uncertainties. providing an oscillating range of uncertainties can be a valuable aid in improving economic conditions as well as reducing activated sludge control time and better treatment plant monitoring. despite the design criteria for bode of 20 mg per liter, pi results show a supply of 12% of the design index. however, considering the supply of the remaining 88% in terms of quality standard for the use of effluents and returned water, according to the deputy of strategic supervision, publication 535, at the rate of 31 mg per liter in the activated sludge sector, the proper performance of the treatment plant is demonstrated. the lube method is an efficient method, so by providing an optimized range of fluctuations for computational data, the smallest abnormal changes in the activated sludge section due to controlling the amount of food for the micro-organisms present in this section; also, the pollution indicators with the least computing time are also reported. in addition, due to the high cost of activated sludge in the wastewater treatment sector, from an economic point of view, it also helps reduce costs. according to the non-linear behavior of bacteria during the reduction of food, as well as the control of mortality caused by the reduction of food, it can be considered a very effective tool.
Keywords tabriz wastewater treatment plant ,activated sludge unit ,uncertainty ,prediction interval ,upper and lower estimate.
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved