>
Fa   |   Ar   |   En
   Parallel simulations for QUAntifying RElaxation magnetic resonance constants (SQUAREMR): An example towards accurate MOLLI T1 measurements  
   
نویسنده xanthis c.g. ,bidhult s. ,kantasis g. ,heiberg e. ,arheden h. ,aletras a.h.
منبع journal of cardiovascular magnetic resonance - 2015 - دوره : 17 - شماره : 1
چکیده    Background: t1 mapping is widely used today in cmr,however,it underestimates true t1 values and its measurement error is influenced by several acquisition parameters. the purpose of this study was the extraction of accurate t1 data through the utilization of comprehensive,parallel simulations for quantifying relaxation magnetic resonance constants (squaremr) of the molli pulse sequence on a large population of spins with physiologically relevant tissue relaxation constants. methods: a cmr protocol consisting of different molli schemes was performed on phantoms and healthy human volunteers. for every molli experiment,the identical pulse sequence was simulated for a large range of physiological combinations of relaxation constants,resulting in a database of all possible outcomes. the unknown relaxation constants were then determined by finding the simulated signals in the database that produced the least squared difference to the measured signal intensities. results: squaremr demonstrated improvement of accuracy in phantom studies and consistent mean t1 values and consistent variance across the different molli schemes in humans. this was true even for tissues with long t1s and molli schemes with no pause between modified-look-locker experiments. conclusions: squaremr enables quantification of t1 data obtained by existing clinical pulse sequences. squaremr allows for correction of quantitative cmr data that have already been acquired whereas it is expected that squaremr may improve data consistency and advance quantitative mr across imaging centers,vendors and experimental configurations. while this study is focused on a molli-based t1-mapping technique,it could however be extended in other types of quantitative mri throughout the body. © 2015 xanthis et al.
کلیدواژه Magnetic resonance imaging; Mapping; MOLLI; Relaxometry; Simulations
آدرس cardiac mr group,department of clinical physiology and nuclear medicine,skåne university hospital lund,lund university,lund,sweden,department of computer science and biomedical informatics,university of thessaly,lamia, Greece, cardiac mr group,department of clinical physiology and nuclear medicine,skåne university hospital lund,lund university,lund, Sweden, laboratory of computing and medical informatics,school of medicine,faculty of health sciences,aristotle university of thessaloniki,thessaloniki, Greece, cardiac mr group,department of clinical physiology and nuclear medicine,skåne university hospital lund,lund university,lund,sweden,department of biomedical engineering,faculty of engineering,lund university,lund,sweden,centre of mathematical sciences,faculty of engineering,lund university,lund, Sweden, cardiac mr group,department of clinical physiology and nuclear medicine,skåne university hospital lund,lund university,lund, Sweden, cardiac mr group,department of clinical physiology and nuclear medicine,skåne university hospital lund,lund university,lund,sweden,laboratory of computing and medical informatics,school of medicine,faculty of health sciences,aristotle university of thessaloniki,thessaloniki, Greece
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved