>
Fa   |   Ar   |   En
   بررسی اثرگذاری قابلیت‌های مدیران، بر اطمینان بیش‌ازحد و نگرش در انتخاب راهبرد  
   
نویسنده نیکبخت محمد رضا ,دهقانی سعدی علی اصغر ,قوهستانی سمانه
منبع پيشرفت هاي حسابداري - 1396 - دوره : 9 - شماره : 2 - صفحه:151 -178
چکیده    کیفیت مدیریت به‌عنوان یکی از مهم‌ترین منابع ایجادکننده ارزش و سودآوری در آینده کسب‌وکار شرکت‌ها شناسایی شده است. نگرش و توانایی مدیران موجب شده است که آنان برای پیشبرد اهداف سازمان، راهبردهایی (استراتژی‌هایی) را برگزینند تا به‌زعم خود عملکرد سازمان را بهبود بخشند؛ اما هنگامی‌که مدیران، احساسات شخصی و هنجارهای اخلاقی را در تصمیم‌های خود درگیر سازند، منطقی بودن آنان موردتردید قرار گرفته و در اصطلاح، شکل غیرمنطقی به خود می‌گیرد که یکی از این رفتارهای غیرمنطقی، اطمینان بیش‌ازحد است؛ این نوع از رفتار می‌تواند بر خط‌مشی آتی سازمان تاثیرگذار باشد. هدف اصلی پژوهش حاضر بررسی تجربی تاثیر قابلیت‌های مدیران بر میزان اطمینان بیش‌ازحد آنان و نگرش در انتخاب راهبرد سازمان است؛ ازاین‌رو نمونه آماری پژوهش، شامل 93 شرکت پذیرفته‌شده در بورس اوراق بهادار تهران، در بازه زمانی 1383 تا 1393 است. نتایج حاصل از تجزیه‌وتحلیل‌های آماری حاکی از آن است که رابطه‌ای منفی و معنادار بین قابلیت‌های مدیران و اطمینان بیش‌ازحد وجود دارد؛ به سخنی دیگر، هراندازه که مقامات ارشد سازمان توانمندتر باشند، از میزان اطمینان بیش‌ازحد آنان کاسته خواهد شد؛ همچنین نتایج نشان‌دهنده رابطه معنادار بین قابلیت‌های مدیران و نوع نگرش آنان در انتخاب راهبرد سازمانی است.
کلیدواژه قابلیت‌های مدیران، اطمینان بیش‌ازحد، راهبرد رهبری بها، راهبرد تمایز، تحلیل پوششی داده‌ها
آدرس دانشگاه تهران, گروه حسابداری, ایران, دانشگاه شیراز, ایران, دانشگاه شیراز, ایران
 
   Investigating the Effects of Managerial Ability on Overconfidence and Attitude of Managers in Choosing Corporation’s Strategy  
   
Authors Nikbakht Mohamadreza ,Dehgani Aliazgar ,Gohestani Samaneh
Abstract    Importance of macroeconomic variables is clear to everyone and announcements of them are seen and carefully scrutinized by different groups of users; however, initial estimates and economic forecasting of macro variable is raised as a serious challenge in economic planning. In this context, little or no evidence has been provided for exploring the relationship between accounting and economics (Macro Accounting) in developing countries like Iran. The idea of macro accounting was based on the idea that accounting variables such as aggregate accounting earnings convey information about Macroeconomics. This paper presents the use of fundamental accounting variables as the best leading indicators of macroeconomics variables.   Research Questions The main questions of this paper are as follows: Can the combination of Elman neural network and particle swarm optimization improve models prediction in comparison to others? How can fundamental accounting variables improve the predictive power of the model?   Methods In this study we rely on predictive power of various models including Elman neural networks and particle swarm optimizationn. An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems. There are many types of artificial neural networks such as Elman Networks. Elman Networks are a form of recurrent neural networks which have connections from their hidden layer back to a special copy layer. Particle swarm optimization (PSO) is a population based stochastic optimization technique developed by  Eberhart and  Kennedy  in 1995, inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). We construct portfolio based on 88 largest firms in Tehran Stock Exchange. The sample period covers 20 semi annuals from 1385 to 1395. For this purpose, fundamental accounting variables (including net income, gross income, inventory, accounts receivable, administrative, general and sales expense, capital expenditures, debt and tax costs) have been chosen and their explanatory power in predicting macro.   Results Taking into consideration more alternative measures for accounting can decrease model's errors. As mentioned in previous subsection, using fundamental accounting variables would enable producing more reliable and accurate results. Our findings suggest that fluctuations in accounting information including net income, gross income, inventory, account receivables, general and sales expense and capital expenditure are a leading indicator of macroeconomic variables. Results show that fundamental accounting variables have predictive power in predicting GDP growth and unemployment rate for the next one and two quarters respectively. Also the empirical results from combination of artificial intelligence models show that optimization of Elman artificial network with particle swarm optimization improves effectiveness of model in comparison to Elman artificial network.   Discussion and Conclusion This study distinguishes itself from previous papers with the introduction of key variables that have not been studied previously in macro accounting subject such as fundamental accounting variables. Prior studies mostly address accounting earnings in general neglecting predictive power of fundamental accounting variables. The main consequences of this study are effective links between accounting and economic information that must be included in the economic and financial decisions. So we recommend studies in application of accounting numbers in modeling macro. Overall the consequences of this paper introduce a new idea that the informativeness of accounting variables is not only in the micro level, but also in macro economy level.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved