|
|
ارزیابی عملکرد مدلهای مبتنی بر یادگیری ماشین در برآورد حداکثر عمق آبشستگی اطراف دماغه آبشکن نوع باندال لایک
|
|
|
|
|
نویسنده
|
صادقی یوسف ,دریائی مهدی ,احمدی فرشاد ,کاشفی پور سیدمحمود
|
منبع
|
تحقيقات آب و خاك ايران - 1403 - دوره : 55 - شماره : 6 - صفحه:945 -961
|
چکیده
|
در تحقیق حاضر عملکرد روشهای مبتنی بر یادگیری ماشین به منظور پیشبینی حداکثر عمق آبشستگی اطراف آبشکن نوع باندال لایک مورد ارزیابی قرار گرفت. برای این منظور سه روش مدل جنگلهای تصادفی (rf)، ماشین بردار پشتیبان (svm) و روش برنامهریزی بیان ژن (gep) مورد استفاده قرار گرفت. به منظور آموزش و آزمایش مدلها از 108 سری اطلاعات (87 سری برای آموزش و 21 سری برای تست) مستخرج از نتایج یک تحقیق آزمایشگاهی استفاده شد. مدلها با ترکیبهای متفاوتی (تک متغیره، دو متغیره، سه متغیره و چهار متغیره) از ورودیها (fr: عدد فرود جریان، s/l: نسبت فاصله به طول آبشکن،θ: زاویه نصب آبشکن نسبت به ساحل و α: تخلخل قسمت نفوذپذیر سازه) مورد ارزیابی قرار گرفتند. نتایج حاصل نشان داد برای تمامی روشها در حالت ورودی تک متغیره، بیشترین و کمترین تاثیر به ترتیب مربوط به پارامترهای α و s/l بودند. در مدل svm با افزایش تعداد ورودیها از تک متغیره به دومتغیره میانگین شاخص mae تقریبا 2 برابر افزایش یافت. در مدل gep نیز افزایش تعداد ورودیها از سه متغیره به 4 متغیره میانگین شاخص mae تقریبا 3.5 برابر افزایش یافت. ولی در روش rf افزایش تعداد ورودیها منجر به افزایش دقت مدل شد و متوسط شاخص mae در حالت 4 متغیره نسبت به سه متغیره 83 درصد کاهش یافت. در نهایت مشخص شد روش rf در برآورد عمق آبشستگی اطراف آبشکن نوع باندال لایک از عملکرد بسیار بهتری (0.006= rmseو 0.009=mae) نسبت به سایر روشها برخوردار بوده و این مدل با ورودیهای یکسان از پراکنش خطای کمتری برخوردار بود.
|
کلیدواژه
|
آبشستگی، هوش مصنوعی، رودخانه، آبشکن
|
آدرس
|
دانشگاه شهید چمران اهواز, دانشکده مهندسی آب و محیط زیست, گروه سازههای آبی, ایران, دانشگاه شهید چمران اهواز, دانشکده مهندسی آب و محیط زیست, گروه سازه های آبی, ایران, دانشگاه شهید چمران اهواز, دانشکده مهندسی آب و محیط زیست, گروه هیدرولوژی و منابع آب, ایران, دانشگاه شهید چمران اهواز, دانشکده مهندسی آب و محیط زیست, گروه سازههای آبی, ایران
|
پست الکترونیکی
|
kashefipour@scu.ac.ir
|
|
|
|
|
|
|
|
|
evaluation of the performance of machine learning methods for estimating the maximum scour depth around the bandallike spur-dike
|
|
|
Authors
|
sadeghi yosef ,daryaee mehdi ,ahmadi farshad ,kashefipour seyed mahmood
|
Abstract
|
in this study, the performance of machine learning-based methods for predicting the maximum scour depth around a bandallike spur-dike is evaluated. for this purpose, three methods of random forest (rf) model, support vector machine (svm), and gene expression programming (gep) were used. to train and test the models, 108 data series (87 series for training and 21 series for testing) were extracted from the results of an experimental study. the models were evaluated with four different combinations of inputs (fr: flow froude number, s/l: ratio of distance to breakwater length, θ: spur-dike installation angle relative to the bank, and α: porosity of the permeable structure). the results showed that for all methods in the one input mode, the parameters with the most and least impact were, in order, α and s/l. in the svm model, the average mae index increased by about 2 times when the number of inputs increased from one input mode. in the gep model, the average mae index increased by about 3.5 times when the number of inputs increased from three to four inputs mode. however, in the rf method, increasing the number of inputs led to an increase in model accuracy, and the average mae index decreased by 83% in the four inputs mode compared to the three inputs mode. finally, it was found that the rf method had much better performance (mae = 0.006 and rmse = 0.009) in estimating the scour depth around the bandal-like spur-dike than the other methods, and this model had less error spread with the same inputs.
|
Keywords
|
scouring ,artificial intelligence ,river ,spur-dike.
|
|
|
|
|
|
|
|
|
|
|