|
|
تخمین غلظت هوا در سرریز شوت با استفاده از روشهای فرامدل
|
|
|
|
|
نویسنده
|
روشنگر کیومرث ,سعادتجو رضا ,عباس زاده حمیدرضا ,پناهی آیدین
|
منبع
|
تحقيقات آب و خاك ايران - 1403 - دوره : 55 - شماره : 4 - صفحه:601 -613
|
چکیده
|
یکی از راههای جلوگیری از ایجاد فشار منفی و کاویتاسیون در سرریزها، هوادهی به جریان عبوری از سرریزها میباشد. شناخت نحوه توزیع تغییرات غلظت هوا در طول سرریز جهت تخمین میزان هوادهی از اهمیت زیادی برخوردار است. در پژوهش حاضر کاربرد روشهای فرامدل رگرسیونی فرآیند گاوسی (gpr) و ماشین بردار پشتیبان (svm) در پیشبینی غلظت هوا مورد بررسی قرار گرفت. بدین منظور مجموعه دادههای آزمایشگاهی (2268) بهدست آمده از مدلهای هیدرولیکی سرریز شوت در فرآیند مدلسازی به کار گرفته شد. مدلهای ورودی متنوعی بر اساس ترکیب مختلفی از پارامترهای اندازهگیری شده تعریف گردید. نتایج بهدست آمده نشان دهنده توانایی بالای هر دو روش در برآورد غلظت هوای مورد نیاز بر روی سرریز است. در برآورد میزان غلظت هوا در سرریز شوت برای حالتی که هوادهی مصنوعی توسط هواده انجام میگیرد پارامترهای دبی جریان (qw)، نسبت فاصله طولی از انتهای دفلکتور به عرض کانال (l/w) و نسبت عمق (عمود بر سرریز) بر عرض کانال (y/w) تاثیر زیادی داشتند. نتایج شاخصهای آماری ضریب همبستگی (r)، ضریب تبیین (dc) و خطای جذر میانگین مربعات برای این حالت در روش gpr بهترتیب 0.9214، 0.8451 و 0.1008 و مقادیر 0.9333، 0.8662 و 0.0937 در روش svm است. برای حالتی که هوادهی مصنوعی توسط هواده انجام نمیگیرد، مدل با پارامترهای ورودی qw، l/w، y/w و δp (اختلاف فشار ما بین فشار اتمسفر و فشار زیر جت) با دارا بودن مقادیر 0.9222=r، 0.8644=dc و 0.0914=rmse در روش gpr و بهترتیب با مقادیر 0.87، 0.7543 و 0.123 بهعنوان برترین مدل انتخاب گردیدند.
|
کلیدواژه
|
رگرسیون فرآیند گاوسی، سرریز شوت، ماشین بردار پشتیبان، هوادهی
|
آدرس
|
دانشگاه تبریز, دانشکده مهندسی عمران, گروه مهندسی عمران, ایران, دانشگاه تبریز, دانشکده مهندسی عمران, گروه مهندسی عمران, ایران, دانشگاه تبریز, دانشکده مهندسی عمران, گروه مهندسی عمران, ایران, دانشگاه تبریز, دانشکده مهندسی عمران, گروه مهندسی عمران, ایران
|
پست الکترونیکی
|
a.panahi1401@ms.tabrizu.ac.ir
|
|
|
|
|
|
|
|
|
estimation of air concentration in chute spillway using metamodel methods
|
|
|
Authors
|
roushangar kiyoumars ,saadatjoo reza ,abbaszadeh hamidreza ,panahi aydin
|
Abstract
|
one of the ways to prevent creating negative pressure and cavitation in spillways is to introduce air into the flow over the spillways. understanding the distribution of air concentration variations along the spillway is of significant importance for estimating the aeration level. this study explores the application of gpr and svm molels in predicting air concentration. to achieve this, a dataset of 2268 laboratory experiments obtained from hydraulic models of chute spillways was utilized in the modeling process. various input models were defined based on different combinations of measured parameters. the results demonstrate the high capability of both methods in estimating the required air concentration over the spillway. in predicting air concentration in the chute spillway under artificial aeration conditions, flow discharge (qw), longitudinal distance ratio from the end of the deflector to the channel width (l/w), and depth ratio (perpendicular to the spillway) to channel width (y/w) significantly influenced the outcomes. statistical indices, including r, dc, and rmse for this case were 0.9214, 0.8451, and 1.008, respectively, in the gpr, and 0.9333, 0.8662, and 0.937 in the svm. for scenarios without artificial aeration, the model with input parameters qw, l/w, y/w, and δp (pressure difference between atmospheric pressure and the pressure under the jet) achieved the best performance in the gpr method with values of r=0.9222, dc=0.8644, and rmse=0.914. in the svm, the same model with values of 0.87, 0.7543, and 0.123 for r, dc, and rmse, respectively, was selected as the superior model.
|
Keywords
|
aeration ,chute spillway ,gaussian process regression ,support vector machine.
|
|
|
|
|
|
|
|
|
|
|