>
Fa   |   Ar   |   En
   برآورد وراثت پذیری، همبستگی‌های فنوتیپی و ژنتیکی برای خصوصیات منحنی رشد بلدرچین ژاپنی  
   
نویسنده ساقی راضیه ,ساقی داوودعلی
منبع پژوهش هاي علوم دامي - 1400 - دوره : 31 - شماره : 4 - صفحه:113 -126
چکیده    زمینه مطالعاتی: صفات رشد به‌ عنوان یکی از ویژگی‌‌های شناخته شده موجودات زنده، به دلیل ارتباط مستقیمی که با سود اقتصادی دارند، از اهمیّت ویژه‌ای برخوردارند. منحنی رشد، تغییرات وزن بدن حیوان را در بازه‌های مختلف زندگی حیوان نشان می‌دهد و توصیف ژنتیکی منحنی رشد در تعیین راهبردهای انتخاب به منظور تغییر شکل منحنی رشد میتواند مفید باشد. هدف: برآورد وراثت پذیری، همبستگی‌های فنوتیپی و ژنتیکی برای پارامترهای منحنی رشد و صفات مختلف وزن بدن در بلدرچین ژاپنی می‌باشد. روش کار: از داده‌های 2035 قطعه بلدرچین، نتاج حاصل از 242 بلدرچین نر و 242 بلدرچین ماده که طی سال‌های 1398-1396 در مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی جمع‌آوری شده بود، استفاده شد. پرندگان از زمان هچ تا 42 روزگی به فاصله 7 روز و در طی چهار نسل، به طور انفرادی وزن‌کشی شدند. به منظور شناسایی عوامل ثابت موثّر بر صفات از مدل خطّی رویّه glm نرم‌افزار sas استفاده شد. برای مقایسه میانگین صفات در سطوح مختلف اثرات ثابت، از آزمون توکی و برای تخمین پارامترهای منحنی رشد، از مدل رگرسیون غیرخطّی استفاده شد. اجزای (کو) واریانس و پارامترهای ژنتیکی منحنی رشد و صفت وزن بدن در سنین مختلف حداکثر درست‌نمایی محدود شده با استفاده از تجزیه و تحلیل چند صفته توسّط نرم افزار dmu برآورد شدند. نتایج: متوسّط پارامترهای تابع غیرخطّی گمپرتز شامل، وزن مجانب (a)، نرخ رشد (b) نرخ بلوغ (k)، به ترتیب 58/ 298 ، 3.5 و 0.053 برآورد شدند. وراثت پذیری وزن هچ، 1، 2، 3، 4، 5 و 6 هفتگی به ترتیب 0.35، 0.45، 0.42، 0.44، 0.45 ، 0.96و 0.72 برآورد گردید. قوی‌ترین همبستگی‌ ژنتیکی بین وزن 3-4 هفتگی (0.93) و 1-2 هفتگی (0.92) و بیشترین همبستگی فنوتیپی هم بین 4-3 هفتگی (0.83) مشاهده شد. نتیجه‌گیری نهایی: نتایج حاصل از این مطالعه پیشنهاد می‌کند که به منظور افزایش بازده تولید، انتخاب بر اساس پارامترهای منحنی رشد به جای انتخاب برای وزن بدن صورت گیرد.
کلیدواژه بلدرچین، پارامترهای منحنی رشد، همبستگی ژنتیکی، همبستگی فنوتیپی
آدرس , ایران, مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی, گروه علوم دامی, ایران
پست الکترونیکی davoudali@yahoo.com
 
   Estimation of heritability, phenotypic and genetic correlations for growth curve characteristics of Japanese quail  
   
Authors Saghi Razieh ,Saghi Davoudali
Abstract    IntroductionGrowth traits are one of the most important traits of domestic animals for meat production, which are of great economic importance and have always been considered by breeders and breeding specialist. Growth models are used to express growth rate and statistical ratio between age and body weight and are calculated nonlinearly (Kum et al 2010). One of the ways to draw and describe the growth curve is to use growth models. By selection, you can change the shape of the growth curve and increase body weight (Anthony et al 1996), although selecting to increase body weight has adverse effects such as obesity, leg problems and sudden death syndrome in poultry. Growth curve parameters are a suitable and efficient criterion that allows changing the relationship between age and body weight through selection (Narince et al 2010). Many researchers have used linear and nonlinear regression models to model the growth phenomenon. These models are more reliable (Vuori et al 2006) than linear models due to the limited number of parameters and have a better fit of the data (Lambe et al 2006). Depending on the breed of livestock and population studied, a growth function presents different results, so it is necessary to model growth for each herd separately (Bahreini Behzadi et al 2015). Despite studies on growth traits of quails, studies that estimate the heritability of growth curve parameters, genetic correlations between these parameters and genetic correlation between growth curve parameters and other traits such as growth traits, production, conversion ratio and carcass traits report is very limited. Therefore, the aim of this study was to estimate heritability, phenotypic and genetic correlations of growth curve parameters and different body weight traits in Japanese quail.Material and MethodsData were obtained from 242 male and 242 female quail hatched between 9698 that belonged to the Khorasan Razavi Agricultural and Natural Resources Research and Education Research Center. Birds were weighed individually for four generations from hatching to 42 days of age over four generations. Pedigree information included bird number, sire number and cage number, year, month, and day of birth of the bird and hatching times over 4 generations. The data were first edited with CFC software and prepared for analysis. The traits studied in this study included body weight records at different ages (1, 7, 14, 21, 28, 35 and 45 days of age). SAS software’s linear model and GLM procedure were used to identify constant factors affecting traits. Nonlinear regression model was used to estimate the growth curve parameters. (Co) variance components and genetic parameters of growth and body weight trait at different ages in quail were estimated using animal model and restricted maximum likelihood method using multivariate analysis by DMU software.Results and DiscussionIn the present study, moderate to high heritability (0.210.72) was obtained for different traits of body weight. Estimation of heritability at 1 week (0.45 ± 0.06), 2 weeks (0.42 ± 0.05), 3 weeks (0.44 ± 0.06), 4 weeks (0.45 ± 0.07), 5 weeks (0.52 ± 0.07) and 6 weeks (0.72 ± 0.06) were higher than the values reported by Barbieri et al. (2015), less than the estimate of Narinc (2010). Estimation of moderate heritability obtained for body weight at 1 and 4 weeks of age and high heritability at 5 and 6 weeks of age show that the response to selection is low at early ages and increases with age at 5 and 6 weeks. The strongest correlations were between 34 weeks weight (0.93) and 12 weeks (0.92). Except for genetic correlations between hatching weight and final ages, most correlations were positive. The highest phenotypic correlation was between 34 weeks (0.83) and the phenotypic correlation between hatch weight and 6 weeks (0.006) was the lowest estimate. The results showed that the Gompertz model with the highest coefficient of determination (0.998) and the lowest error variance (1.8262) was the best growth predictor model in Japanese quails. Estimation of growth curve parameters (a, b and k) were 298.58, 3.5 and 0.053, respectively.The small difference between the observed and predicted body weight values indicates that the Gampertz model was able to describe the growth of quails well. Heritability of growth curve parameters (a, b and k) were estimated to be 0.21, 0.48 and 0.22, respectively. Phenotypic and genetic correlations between parameters a and b with different traits of body weight were generally negative. The highest genetic correlation (0.86) and phenotypic (0.66) were obtained between k parameter and 3week weight. Genetic correlation between mean growth rate(b) and various traits of body weight was 0.90.62. The highest genetic and phenotypic correlations were estimated between maturity rate(k) and 2, 3 and 4 weeks weights. Genetic and phenotypic correlations between growth curve parameters were generally negative. The only correlation between asymptotic weight(a) and mean growth rate(b) was positive and high. These negative correlations indicate that if choice is used to increase puberty weight, we will have negative effects on growth rate and the growth rate will tend to decrease.ConclusionEstimation of heritability of growth curve parameters and their correlation with body weights at different ages showed that increasing production efficiency by selection based on growth curve parameters rather than selection for body weight could be useful. Curve deformations are more important than other parameters for productive purposes, especially the parameters a and k that are related to growth rates. Choosing a higher growth rate at 0 to 14dayold does not change maturity weight, but choosing a higher body weight, that is, the nearinflection point of the curve, changes the shape of the curve without any significant change in parameter a. On the other hand, limiting the selection index can be applied, k is changed without any change in parameter a. The heritability of the Gompertz growth curve parameters and their correlation with weekly weights suggest that the growth rate parameter may be useful in selecting animals that are of early growth.Key word: Genetic correlation, Growth curve, Phenotypic correlation, Quail.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved