>
Fa   |   Ar   |   En
   بررسی ویژگی‌های ژرم پلاسم گندم دیم جهت مقاومت به بیماری زنگ زرد در اردبیل  
   
نویسنده صفوی صفرعلی ,افشاری فرزاد ,حسنپور حسنی مقصود
منبع پژوهش هاي حفاظت گياهان ايران - 1400 - دوره : 35 - شماره : 2 - صفحه:169 -183
چکیده    زنگ زرد با عامل p. striiformis f. sp. tritici یکی از مهم ترین بیماری های برگی گندم است که کاهش عملکرد قابل توجهی را در نواحی گندم خیز سراسر جهان موجب می شود. در ایران نیز در سال های همه گیری، بیماری زنگ زرد یکی از عوامل مهم کاهش عملکرد گندم به شمار می رود. مطالعه حاضر به منظور تعیین منابع مقاومت ژنتیکی نسبت به زنگ زرد انجام شده است، تا برنامه به نژادی برای آزادسازی رقم با موفقیت بیشتری انجام شود. ژرم پلاسم گندم دیم شامل 191 لاین پیشرفته و امیدبخش (شامل گندم نان زمستانه، بهاره و گندم دوروم) تحت شرایط مزرعه ای در ایستگاه تحقیقات کشاورزی آلاروق اردبیل طی سال زراعی 139495 ارزیابی شدند. در ارزیابی های مزرعه ای برای مقایسه لاین ها از مقادیر نسبی سطح زیر منحنی پیشرفت بیماری (raudpc) استفاده شد. همان تعداد ژرم پلاسم، در مرحله گیاهچه ای نیز برای پاتوتیپ های 6e158a+  و 6e150a+, yr27 در شرایط گلخانه مورد بررسی قرار گرفتند. هر دو تیپ مقاومت مرحله گیاهچه و گیاه بالغ در بین لاین های مورد بررسی شناسائی شدند. واکنش گیاهچه ای نشان داد که تعداد 34 لاین (18 %) دارای مقاومت گیاهچه ای نسبت به هر دو پاتوتیپ و با احتمال وجود ژن /ژن های مقاومت yr3v، yr3a،yr4a ، yr4، yr5، yr10، yr15، yr16، yrcv و yrsd می باشند. تعداد 23 ژنوتیپ در مرحله گیاهچه ای در برابر حداقل یک پاتوتیپ حساس بوده و در مرحله گیاه بالغ واکنش مقاومت با مقادیر پایین raudpc (010) نشان دادند و به عنوان ارقام دارای مقاومت گیاه بالغ (apr) انتخاب شدند. همچنین تعداد 27 ژنوتیپ در مرحله گیاه بالغ مقادیر متوسط raudpc (1130) و در مرحله گیاهچه ای در برابر حداقل یک پاتوتیپ حساس بودند و به عنوان گروه دارای مقاومت تدریجی (sr) انتخاب شدند. بقیه ژنوتیپ ها دارای مقادیر بالای raudpc و یا بدون مقاومت گیاهچه ای بودند. منابع ژنتیکی امیدبخش برای تجمیع هر دو تیپ مقاومت جهت دستیابی به مقاومت پایدار و کنترل پایدار علیه زنگ زرد در ایران استفاده خواهند شد.
کلیدواژه گندم دیم، زنگ نواری، مقاومت گیاهچه‌ای، مقاومت پایدار، raudpc
آدرس سازمان تحقیقات، آموزش و ترویج کشاورزی, مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل, بخش تحقیقات علوم زراعی و باغی, ایران, سازمان تحقیقات، آموزش و ترویج کشاورزی, موسسه تحقیقات اصلاح و تهیه نهال و بذر, بخش تحقیقات غلات, ایران, سازمان تحقیقات، آموزش و ترویج کشاورزی, موسسه تحقیقات کشاورزی دیم کشور, بخش تحقیقات غلات, ایران
 
   Characterization of Dry-Land Wheat Germplasm for Stripe Rust (Puccinia striiformis f. sp. tritici) Resistance in Ardabil  
   
Authors Safavi S.A. ,Afshari F. ,Hasanpour-Hossni M.
Abstract    Introduction: Yellow (stripe) rust, caused by P. striformis f. sp. tritici, is one of the most important foliar diseases of wheat. The disease has been reported in temperate, cool, and higher altitudes regions, where wheat is grown. The widespread of the disease has always threatened wheat production and resulted in 30 to 100% losses in yield. Although chemical method is common throughout the world, it is not practical by farmers in developing countries. The most alternative practical way is to use genetic resistance which is economical and safely to environment. Two types of genetic resistance, including racespecific and nonracespecific resistance, are well known. Racespecific resistance operates based on the gene for gene hypothesis. Following the evolving of new races of pathogens, racespecific resistance becomes almost ineffective within 3–5 years. Nonracespecific resistance is controlled by smalleffect (additive) genes and is long lasting. The wisely use of genetic resistance through the combination of racespecific and nonracespecific genes is suggested for the effective management of rusts. In view of the above, it is important to determine the properties of wheat germplasm for the detection of such diverse resistance. Therefore, the present study was performed to identify genetic sources with different resistance types to enhance the improvement of breeding operations for the release of cultivar in Iran. Materials and Methods: In order to study of seedling reactions, a total of 191 dry land wheat lines were used. Seeds of each genotype (57 seeds) were planted in 7× 7 cm pots under controlled conditions in the greenhouses of Karaj. Seedlings were inoculated with two pathotypes of pathogen (6E158A+ and 6E150A+, Yr27). The inoculated Plants were transferred to a growth chamber at 10 ° C with 16 h of light and 8 h of darkness for 24 h. Plants were then transferred to greenhouses at 6–10 ° C temperature. 1417 days later, seedling infection types were recorded based on a 04 scale (Stakman et al., 1962). The same number of studied lines at the seedling stage, were also used to evaluate the adult plant responses. The germplasm was cultivated at Ardebil Agricultural Research Station during the 20152016 cropping year. About eight grams seeds of each entry were planted in tworow plots of 1 m length with 30 cm distance. Plots were spaced at 65 cm. Infection types were recorded in the adult plant stage according to the method of Rolfs et al. Disease severity data were used to calculate the area under the disease progress curve (AUDPC). The relative area under the disease progress curve was also compared by comparing each line with the susceptible cultivar (assuming 100% susceptible cultivar value). In order to determine different resistance groups according to the method of Bux et al. (2012), lines with rAUDPC between 010 was considered as resistant group, rAUDPC = 1130 as intermediate and lines with rAUDPC values above 30 were classified as susceptible.Results and Discussion: Seedling evaluation using pathotype 6E158A+ showed that of 63 resistant genotypes, 31 genotypes were from winter wheat, 4 from durum wheat and 28 genotypes of spring bread wheat. The seedling reactions using pathotype 6E150A+, Yr27 indicated that of 64 resistant genotypes, 26 genotypes were of winter bread wheat, 8 genotypes of durum wheat and 30 genotypes of spring bread wheat. The results at seedling stage also revealed that 51 genotypes were resistant to both pathotypes, of which 24 were genotypes of winter bread, 4 genotypes of durum wheat and 23 genotypes of spring bread wheat. Of the 191 genotypes studied, 24 (12.5%) genotypes also showed resistance at both seedling (against to two pathotypes) and adult plant stages. In field conditions, 81 genotypes were susceptible and 110 (57.6%) were resistant. Among the resistant genotypes, the differences were observed based on the values of the relative area under the disease progress curve (rAUDPC). The response of winter wheat, spring wheat and durum wheat varied. Among the winter bread wheat, spring and durum wheat genotypes, 9 (12.5%), 38 (44.2%) and 4 (12.1%) genotypes had low levels of the area under the disease progress curve (rAUDPC = 010), respectively, and were classified as resistant group. A group of genotypes also had moderate values of the area under the disease progress curve (rAUDPC = 311), of which 16 (22.2%), 37 (43%) and 11 (33.3%) genotypes were of winter, spring, and durum wheat genotypes, respectively.Conclusion: A number of genotypes having seedling resistance were identified with probability of resistance gene/genes; Yr3v, Yr3a, Yr4a, Yr4, Yr5, Yr10, Yr15, Yr16, YrCV, YrSD, or unknown genes. Most winter wheat genotypes lacked seedling resistance. Some of the genotypes had adult plant and slow rusting resistance (Nonrace specific or durable resistance) and this percentage was higher among spring bread wheat than winter wheat and durum wheat genotypes. This germplasm with various sources of resistance will be useful in integrating both types of resistance through the pyramiding of genes for durable resistance and eventually highyielding resistant varieties will be introduced to farmers.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved