>
Fa   |   Ar   |   En
   شبیه سازی پاسخ جوانه زنی هندوانه (Citrullus Lanatus Thunb.) به دما و پتانسیل آب  
   
نویسنده صابرعلی فرهاد ,نستری نصرآبادی حسین ,شیرمحمدی علی اکبر خانی زهرا
منبع علوم باغباني - 1398 - دوره : 33 - شماره : 4 - صفحه:727 -741
چکیده    جوانه زدن کامل و یکنواخت که شرط لازم برای استقرار گیاهچه های قوی و نهایتاً تولید موفق یک محصول است، تحت تاثیر عوامل مختلف محیطی بویژه حرارت و رطوبت بستر کشت قرار می گیرد. به منظور مطالعه تاثیر دما و تنش خشکی بر جوانه زنی بذر هندوانه و کمی سازی پاسخ جوانه زنی با مدل های زمان حرارتیرطوبتی، آزمایشی به صورت فاکتوریل با هفت سطح دما شامل 10، 15، 20، 25، 30، 35 و 40 درجۀ سلسیوس و شش سطح تنش خشکی شامل 0، 0.25-، 0.5-، 0.75-، 1.0-و 1.25-مگاپاسکال انجام شد. نتایج نشان داد بطور متوسط در همۀ سطوح دمایی با کاهش پتانسیل اسمزی، میزان جوانه زنی کاهش یافت، با این وجود شدت این کاهش در محدوده حرارتی 25 درجه سانتی گراد کمتر از دماهای بالاتر و پایین تر آن بود. کمینه و بیشینه دما برای جوانه زنی هندوانه در روش رگرسیون خطی به ترتیب 10.7 و 40.0 درجه ساتیگراد، و در روش مدل زمان حرارتی 11.5 و 40.1 درجه سانتیگراد برآورد گردید. درجه حرارت مطلوب جوانه زنی نیز در روش رگرسیون و مدل زمان حرارتیرطوبتی به ترتیب 25.3 و 25.2 درجه سانتی گراد برآورد شد. مقدار پتانسیل آب پایه برای جوانه زنی هندوانه در مدل زمان رطوبتی در درجه حرارت های مختلف نیز بین 0.45- تا 1.23-مگاپاسکال محاسبه شد، با این وجود در مدل زمان حرارتیرطوبتی مقدار پتانسیل آب آستانه برای جوانه زنی در دامنه حرارتی پایین تر و بالاتر از حد مطلوب حرارتی بین 1.1-تا 1.2-مگاپاسکال تخمین زده شد. بدین ترتیب نتایج نشان داد که با افزایش حرارت بستر کشت پتانسیل آب پایه برای جوانه زنی افزایش خواهد یافت. در نهایت نتایج مدل نشان داد که مدل زمان حرارتیرطوبتی به خوبی قادر است بیش از 90 درصد تغییرات جوانه زنی بذر هندوانه را در پاسخ به حرارت و رطوبت کمی کند.
کلیدواژه تجزیه پروبیت، تنش خشکی، پتانسیل آب پایه، مدل زمان حرارتی-رطوبتی
آدرس مجتمع آموزشی عالی تربت جام, گروه علوم و مهندسی باغبانی, ایران, مجتمع آموزشی عالی تربت جام, گروه علوم و مهندسی باغبانی, ایران, مجتمع آموزشی عالی تربت جام, گروه علوم و مهندسی آب, ایران
 
   Simulation of Germination Response of Watermelon (Citrullus lanatus Thunb.) to Temperature and Water Potential  
   
Authors Nastari Nasrabadi Hossein ,Saberali Seyed Farhad ,Shirmohamadi Ali Akbar Khani Zahra
Abstract    ;Introduction: A rapid, complete, and uniform seed germination is important to establish a healthy seedling that is a critical key to successful crop production. Therefore, identification of effective factors on germination and plant response to various conditions are important to use an appropriate agronomic managements. Temperature and water are the most important environmental factors controlling seed germination in plants. The crop growth models are among the most effective tools for using in crop management decisions. The response of seed germination to temperature and water potential can be simulated by thermal time, hydrotime and hydrothermal time models. Regarding the importance of watermelon production in Iran, this study was conducted to determine the cardinal temperatures of germination in watermelon plant, and also to quantify its germination in response to the temperature and water potential interaction. .;Materials and Methods: In order to investigate the effects of temperature and drought stress on seed germination and quantifying the germination responses; a factorial experiment was conducted with seven levels of temperature including 10, 15, 20, 25, 30, 35 and 40 °C and the six levels of water potential including 0, –0.25, –0.5, −0.75, –1.0, and –1.25 MPa, respectively. A Ψ of 0 MPa was obtained using distilled water. The negative Ψ levels were prepared by polyethylene glycol (PEG 6000; Merck, Germany) according to Michel and Kaufman (1973). For each treatment, four 25seed replicates were placed in 9cm petri dishes containing one disk of Whatman No. 1 filter paper, with 7 mL of test solutions. Cumulative germination percentage was transformed to probit regression against time log (Finney, 1971; Steinmaus et al., 2000), and the time taken for cumulative germination (tg) to reach subpopulation percentiles (10–90%) was estimated from this function according to Steinmaus et al. (2000). Then the germination rates (GR) were calculated as the inverses of the germination times for each percentile at each T or Ψ. The preliminary estimation of the parameters in the TT, and HT models were obtained by plotting GR versus T and Ψ for each percentile. Then using repeated probit analysis developed by Ellis et al. (1986), the exact parameters for the TT, HT and HTT models were determined for the whole seed population. All statistical procedure were done by SAS and Excel software, and the figures were drawn by SigmaPlot10 software.;Result and Discussion: The analysis of variance showed that the temperature, water potential and their interaction had significant effect on the germination percentage of the watermelon plant. Seed germination of watermelon was about 96 % under the optimal conditions. However, the germination ability was affected by the temperature and water potential of the seedbed. The results showed that the germination was decreased by decreasing water potential, at all temperature levels. The seeds of watermelon germinated over a range of water potentials from 0 to 1 MPa. Furthermore, the lowest germination loss associated with decreasing water potential observed at temperature range of 2030 °C (compared to temperatures below and above this range). The maximum percentage of germination was recorded at 2030 °C, while no seeds germinated at 10 and 40 ° C. The results also showed that the highest germination rate was obtained at 25 °C and the germination rate decreased at lower and higher temperature than this range. While watermelon seeds were grown under no water stress condition, the estimated base and ceiling temperatures of germination by a linear regression method were 10.7 and 40.0 °C, respectively. However thermal time model was used, but the base and the maximum temperatures were estimated as 11.5 and 40.1 °C, respectively. Furthermore, an optimum temperature of 25.2 °C was predicted by hydrothermal time model for watermelon germination. The results showed that the base temperature and median thermal time to germination were varied with changing water potential. The hydrotime analysis showed that the base water potentials was in a range from 0.45 to 1.23 Mpa, that differed with changing water potential. Watermelon seeds had higher base water potential and also required a longer hydrotime for germination under nonoptimal temperature. Hydrothermal time analysis showed that seed germination responses to temperature and water potential might as well quantified by parameters derived from hydrothermal time models (R2= 0.900.92). The amount of hydrothermal time required to germinate was 40.5 MPa °C days on the suboptimal and supra optimal temperature ranges. The HTT model showed that the Ψb(50) increased by 0.09 MPa with every degree increase in temperature above optimum temperature.;Conclusions: The thermal time, hydrotime and hydrothermal time models well described germination time course of watermelon seeds in response to temperature and water potential.Thus, the estimated parameters of these germination models allowed us to characterize the germination behavior of watermelon seeds under varying environmental conditions and global warming.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved