>
Fa   |   Ar   |   En
   automatic seizure detection based on nonlinear dynamical analysis of eeg signals and mutual information  
   
نویسنده akbarian behnaz ,erfanian abbas
منبع basic and clinical neuroscience - 2018 - دوره : 9 - شماره : 4 - صفحه:167 -179
چکیده    Introduction: in this paper, nonlinear dynamical analysis based on recurrence quantification analysis (rqa) is employed to characterize the nonlinear eeg dynamics. rqa can provide useful quantitative information on the regular, chaotic, or stochastic property of the underlying dynamics. methods: we use the rqa-based measures as the quantitative features of the nonlinear eeg dynamics. mutual information (mi) was used to find the most relevant feature subset out of rqa-based features. the selected features were fed into an artificial neural network for grouping of eeg recordings to detect ictal, interictal, and healthy states. the performance of the proposed procedure was evaluated using a database for different classification cases.results: the combination of five selected features based on mi achieved 100% accuracy, which demonstrates the superiority of the proposed method.conclusion: the results showed that the nonlinear dynamical analysis based on rcurrence quantification analysis (rqa) can be employed as a suitable approach for characterizing the nonlinear eeg dynamics and detecting the seizure.
کلیدواژه epilepsy ,mutual information ,nonlinear analysis ,recurrence quantification analysis ,seizure detection
آدرس iran university of science and technology, iran neural technology research centre, ایران, iran university of science and technology, school of electrical engineering, department of bioelectrical engineering, ایران
پست الکترونیکی erfanian@iust.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved