>
Fa   |   Ar   |   En
   improving gender recognition using fingerprint with svm, knn, and decision tree  
   
نویسنده shirini kimia ,roshan zamir nafiseh ,feizi-derakhshi mohammad-reza ,ahmadi ganjei mohammad
منبع سومين كنفرانس ملي كامپيوتر،فناوري اطلاعات و كاربردهاي هوش مصنوعي - 1398 - دوره : 3 - سومین کنفرانس ملی کامپیوتر،فناوری اطلاعات و کاربردهای هوش مصنوعی - کد همایش: 98190-23419 - صفحه:0 -0
چکیده    In this paper, fingerprint gender recognition usinga combination of three feature vectors of knn, svm, anddecision tree was used to extract features to classify the gender ofpersons. fingerprint verification is one of the most reliable andcommon methods of identifying individuals and plays a veryimportant role in legal applications such as criminalinvestigations. fingerprint, on the other hand, is being used as abiometric tool to identify gender because of its unique characterand unchanging during person life. the most important featuresfrom knn, svm, and decision tree are used to classify afingerprint to male or female classes. the practical results showthat our proposed system can be used as a proper candidate incriminology with high accuracy compared to other strategies.
کلیدواژه fingerprint; classification; gender recognition; decision tree; knn; svm
آدرس , iran, , iran, , iran, , iran
پست الکترونیکی ahmadi.ganjei@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved