|
|
group amenability for direct sum and tensor product of von neumann algebras
|
|
|
|
|
نویسنده
|
ghanei mohammad reza
|
منبع
|
اولين كنفرانس بين المللي رياضيات و كاربردهاي آن - 1400 - دوره : 1 - اولین کنفرانس بین المللی ریاضیات و کاربردهای آن - کد همایش: 00210-41497 - صفحه:0 -0
|
چکیده
|
For a family of von neumann algebras $left(m_{i}ight)_{i in i}$ and a locally compact group $g$, we consider the concept of $g$-amenability of direct sum $igoplus_{i} m_{i}$. we prove that if $igoplus_{i} m_{i}$ is g-amenable, then every $m_i$ is g-amenable. but if one of the elements of the family $left(m_{i}ight)_{i in i}$ is $g$-amenable, then$igoplus_{i} m_{i}$ is $g$-amenable. finally, for two von neumann algebras $m$ and $n$, we show that the von neumann algebraic tensor product of $m$ and $n$ is $gimes h$-amenable if and only if $m$ is $g$-amenable and $n$ is $h$ amenable.
|
کلیدواژه
|
direct sum of von neumann algebras# group amenability#tensor product of von neumann algebras# von neumann algebra
|
آدرس
|
, iran
|
پست الکترونیکی
|
m.r.ghanei@khn.ui.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|