>
Fa   |   Ar   |   En
   generalized inverse of block operator matrices over banach algebras  
   
نویسنده haddadi tahereh ,sheibani marjan
منبع اولين كنفرانس بين المللي رياضيات و كاربردهاي آن - 1400 - دوره : 1 - اولین کنفرانس بین المللی ریاضیات و کاربردهای آن - کد همایش: 00210-41497 - صفحه:0 -0
چکیده    We introduce a new kind of generalized inverse which is called $pi-$hirano inverse‎. ‎an element $ain mathcal{a}$ has $pi-$hirano inverse if there exists $xin mathcal{a}$ such that $x in comm(a)$‎, ‎$x=xax$ and $a-a^{n+2}xin n(mathcal{a})$ for some $nin {bbb n}$‎. ‎in this paper‎, ‎some elementary properties of the $pi-$hirano inverse are obtained‎. ‎we investigate the existence of the $pi-$hirano inverse for the anti-triangular operator matrix $n=left[ egin{array}{cc} a&bc&0 end{array} ight]$ with $abc=0$ or $bca=0$ and $ca^2=0$‎. ‎certain multiplicative and additive results for the $pi-$hirano inverse in a banach algebra are presented‎.
کلیدواژه drazin inverse# .hirano inverse# additive property# operator matrix#perturbation
آدرس , iran, , iran
پست الکترونیکی sheibani@fgusem.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved