|
|
generalized inverse of block operator matrices over banach algebras
|
|
|
|
|
نویسنده
|
haddadi tahereh ,sheibani marjan
|
منبع
|
اولين كنفرانس بين المللي رياضيات و كاربردهاي آن - 1400 - دوره : 1 - اولین کنفرانس بین المللی ریاضیات و کاربردهای آن - کد همایش: 00210-41497 - صفحه:0 -0
|
چکیده
|
We introduce a new kind of generalized inverse which is called $pi-$hirano inverse. an element $ain mathcal{a}$ has $pi-$hirano inverse if there exists $xin mathcal{a}$ such that $x in comm(a)$, $x=xax$ and $a-a^{n+2}xin n(mathcal{a})$ for some $nin {bbb n}$. in this paper, some elementary properties of the $pi-$hirano inverse are obtained. we investigate the existence of the $pi-$hirano inverse for the anti-triangular operator matrix $n=left[ egin{array}{cc} a&bc&0 end{array} ight]$ with $abc=0$ or $bca=0$ and $ca^2=0$. certain multiplicative and additive results for the $pi-$hirano inverse in a banach algebra are presented.
|
کلیدواژه
|
drazin inverse# .hirano inverse# additive property# operator matrix#perturbation
|
آدرس
|
, iran, , iran
|
پست الکترونیکی
|
sheibani@fgusem.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|