|
|
a classification theorem on the lorentz hypersurfaces of minkowski space
|
|
|
|
|
نویسنده
|
pashaie firooz
|
منبع
|
اولين كنفرانس بين المللي رياضيات و كاربردهاي آن - 1400 - دوره : 1 - اولین کنفرانس بین المللی ریاضیات و کاربردهای آن - کد همایش: 00210-41497 - صفحه:0 -0
|
چکیده
|
In this paper, we classify timelike hypersurfaces in lorentz-minkowski space, $x:m^nightarrowl^{n+1}$,satisfying the condition $l_kx=ax+b$, where $l_k$ is the $k$th extension of laplace operator (i.e. $delta$), $a$ is a constant matrix and $b$ is a constant vector. the condition $l_kx=ax+b$ is a new version of a well-known equation $delta x=d x$ for a real number $d$. as an extension of takahashi s theorem we show that such a hypersurface has to be $k$-minimal or an open piece of $s_1^n(c)$, $s_1^m(c)imesr^{n-m}$ or $s^m(c)imesl^{n-m}$ for some $c>0$ and $1
|
کلیدواژه
|
timelike hypersurface ,higher order mean curvature ,lorentz-minkowski space
|
آدرس
|
, iran
|
پست الکترونیکی
|
f−pashaie@maragheh.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|