|
|
the oriented arc coloring of generalized theta graphs
|
|
|
|
|
نویسنده
|
sadat mousavi fatemeh ,nouri masoumeh ,siami nahid
|
منبع
|
اولين كنفرانس بين المللي رياضيات و كاربردهاي آن - 1400 - دوره : 1 - اولین کنفرانس بین المللی ریاضیات و کاربردهای آن - کد همایش: 00210-41497 - صفحه:0 -0
|
چکیده
|
a homomorphism from $overrightarrow{g}$ to $overrightarrow{h}$ is a mapping $c$ from $v (overrightarrow{g})$ to $v (overrightarrow{h})$ that preserves the arcs (that is $overrightarrow{c(u)c(v)} in a(overrightarrow{h})$ whenever $overrightarrow{uv} in a(overrightarrow{g})$). the oriented chromatic number of $overrightarrow{g}$ is the minimum order of an oriented graph $overrightarrow{h}$ such that $overrightarrow{g}$ has a homomorphism to $overrightarrow{h}$. the oriented arc chromatic number of $overrightarrow{g}$ is the minimum order of an oriented graph $overrightarrow{h}$ such that the line oriented graph of $overrightarrow{g}$ has a homomorphism to $overrightarrow{h}$. in this paper, we prove that oriented arc chromatic number of any oriented generalized theta graph lies between $1$ and $5$ and that these bounds are tight. to do this, we obtain a homomorphism from the oriented generalized theta graph to tournament $t_5$.
|
کلیدواژه
|
oriented arc coloring# oriented arc chromatic number and generalized theta graph
|
آدرس
|
, iran, , iran, , iran
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|