|
|
chromatic number of the perpendicular graphs of modules
|
|
|
|
|
نویسنده
|
shirali maryam
|
منبع
|
اولين كنفرانس بين المللي رياضيات و كاربردهاي آن - 1400 - دوره : 1 - اولین کنفرانس بین المللی ریاضیات و کاربردهای آن - کد همایش: 00210-41497 - صفحه:0 -0
|
چکیده
|
let $r$ be a ring and $m$ be an $r$-module. two modules $a$ and $b$ are called orthogonal, written $aperp b$, if they do not have non-zero isomorphic submodules. we consider an associated graph $gamma_{ot}(m)$ to $m$ with vertices $mathcal{m}_{perp}={(0)eq alneq m;|; exists (0)eq blneq m ; mbox{such that}; aperp b}$, and for distinct $a,binmathcal{m}_{perp}$, the vertices $a$ and $b$ are adjacent if and only if$aperp b$. the main object of this article is to study the interplay of module-theoretic properties of $m$ with graph-theoretic properties of $gamma_{ot}(m)$. we study the clique number and chromatic number of $gamma_{ot}(m)$. among other results, we study when $omega(gamma_{ot}(m)) < infty $, conclude that $chi(gamma_{ot}(m)) < infty $. also it is shown that for semi-artinian module $m$, $omega(gamma_{ot}(m))=chi(gamma_{ot}(m))$.
|
|
|
آدرس
|
, iran
|
پست الکترونیکی
|
maryam.shirali98@yahoo.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|