|
|
polymatroidal ideals and linear resolution
|
|
|
|
|
نویسنده
|
bandari s.
|
منبع
|
بيست و هفتمين سمينار جبر ايران - 1400 - دوره : 2 - بیست و هفتمین سمینار جبر ایران - کد همایش: 00220-76842 - صفحه:0 -0
|
چکیده
|
Let $s=k[x_1,ldots,x_n]$ be a polynomial ring over a field $k$ and $frak{m}=(x_1,ldots,x_n)$ be the unique homogeneous maximal ideal. ##let $isubset s$ be a monomial ideal with a linear resolution and $ifrak{m}$ be a polymatroidal ideal. ##we prove that if either $ifrak{m}$ is polymatroidal with strong exchange property, or $i$ is a monomial ideal in at most 4 variables, then $i$ is polymatroidal
|
کلیدواژه
|
polymatroidal ideals ,monomial localization ,linear quotients ,linear resolution
|
آدرس
|
, iran
|
پست الکترونیکی
|
somayeh.bandari@yahoo.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|