|
|
lee weight for (u,u + v)-construction of codes over z4
|
|
|
|
|
نویسنده
|
farhang baftani farzaneh
|
منبع
|
بيست و هفتمين سمينار جبر ايران - 1400 - دوره : 2 - بیست و هفتمین سمینار جبر ایران - کد همایش: 00220-76842 - صفحه:0 -0
|
چکیده
|
For a linear code $c$ of length $n$ over $z_4$, the lee support weight of $c$, denoted by $wt_l(c)$, is the sum of lee weights of all columns of $a(c)$, $a(c)$ is $|c| times n$ array of all codewords in $c$. ## for $1 leq r leq rank(c)$, the $r$-th generalized lee weight with respect to rank (glwr) for $c$, denoted by $d_r^l(c)$, is defined as begin{equation*} d_r^l(c)=minlbrace wt_l(d); d text{ is a } z_4-text{submodule of c}, rank(d)=rrbrace. end{equation*} let $c_i, i=1,2$ be codes over $z_4$ and $c$ denote $(u, u+v)$-construction of them. ##in this paper, we obtained $d_1^l(c)$ in terms of $d_1^l(c_1),d_1^l(c_2)$ and we generally obtained an upper bound for $d_r^l(c)$ for all $r$, $1 leq r leq rank(c)$.## we found a relationship between $wt_lx$, $wt_ly$ and $wt_l(x+y)$, for any $x, y in z_4^n $and we showed that lee support weight is invariant under multiplication by 3
|
کلیدواژه
|
linear code ,hamming weight ,lee weight ,generalized lee weight ,$(u ,u+v)$- construction of codes
|
آدرس
|
, iran
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|