>
Fa   |   Ar   |   En
   groups which do not have four irreducible characters of degrees divisible by a prime $p$  
   
نویسنده alizadeh fereydoon ,behravesh houshang ,ghaffarzadeh mehdi ,ghasemi mohsen
منبع بيست و هفتمين سمينار جبر ايران - 1400 - دوره : 2 - بیست و هفتمین سمینار جبر ایران - کد همایش: 00220-76842 - صفحه:0 -0
چکیده    Given a finite group $g$, we say that $g$ has property $cp_n$ if for every prime integer $p$, $g$ has at most $n-1$ irreducible characters whose degrees are multiples of $p$. ##in this paper, we classify all finite groups that have property $cp_4$. ##we show that the groups satisfying property $cp_4$ are exactly the finite groups with at most three nonlinear irreducible characters, one solvable group of order $168$, $sl_2(3)$, $alt_5$, $sym_5$, $psl_2(7)$ and $alt_6$.
کلیدواژه finite group; prime divisors; character graph
آدرس , iran, , iran, , iran, , iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved