|
|
non-parametric generalized additive models with application incovid-19 data
|
|
|
|
|
نویسنده
|
malekzadeh ahad ,rajabi naraki fatemeh
|
منبع
|
شانزدهمين كنفرانس آمار ايران - 1401 - دوره : 16 - شانزدهمین کنفرانس آمار ایران - کد همایش: 01220-18271 - صفحه:0 -0
|
چکیده
|
In order to determine the model governing the variation of a random variableover time according to the variables affecting it, in recent decades, efficient methodshave been developed. one of these methods is the generalized additive model(gam). in this paper, we intend to express this method in parametric and non- parametricfashion and compare it with the segmented regression model. moreover, we willshow the efficiency of this method by providing an example of covid-19 effects.
|
کلیدواژه
|
generalized additive model; smooth function; segmented linear regressionmodel; splines; penalized likelihood; covid-19 data.
|
آدرس
|
, iran, , iran
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|