>
Fa   |   Ar   |   En
   on using complex principal geodesic analysis to tackle variabilityamong angular data  
   
نویسنده golalizadeh mousa
منبع شانزدهمين كنفرانس آمار ايران - 1401 - دوره : 16 - شانزدهمین کنفرانس آمار ایران - کد همایش: 01220-18271 - صفحه:0 -0
چکیده    Principal component analysis (pca) is one of the well-known tools formodeling and visualizing a data set with correlated variables. however, it cannot bedirectly employed for the data taking their values in non-euclidean space, such asangular data. an alternative option is to invoke the complex principal componentanalysis (cpca) which uses the euler formula to take the periodic feature of angles.another possibility is the dihedral angles principal geodesic analysis (dpga), consideringthe geodesic distance for the angles and then utilizing the pca. in this paper,we propose a new method called complex principal geodesic analysis (cpga), acombined version of dpga and cpca. it benefits from advantages of both tools toderive the complex covariance matrix and then invoke dimension reduction methods.the proposed method is applied to the dihedral angles of particular protein structure.
کلیدواژه dimension reduction; dihedral angles; principal geodesic analysis; complexprincipal component analysis; non-euclidean space.
آدرس , iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved