>
Fa   |   Ar   |   En
   ultra-high dimensionality: a challenge in variable selection and  
   
نویسنده kazemi mohammad
منبع شانزدهمين كنفرانس آمار ايران - 1401 - دوره : 16 - شانزدهمین کنفرانس آمار ایران - کد همایش: 01220-18271 - صفحه:0 -0
چکیده    In the era of big data, the high dimensionality in covariates poses unprecedentedchallenges in variable selection and classification problems. in this paper, wesuggest an efficient method for simultaneous classification and identifying importantvariables in the setting of ultra-high dimensional models. the implementation of thesuggested method is not limited by the dimensionality of the models and requires muchless computation. numerical examples and a real data analysis are used to demonstrateits finite sample performance.
کلیدواژه classification; screening; sparsity; support vector machine; ultra-highdimension; variable selection.
آدرس , iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved