>
Fa   |   Ar   |   En
   symmetrical and asymmetrical smooth transitionautoregressive-garch model: estimation and model selection  
   
نویسنده zamani mehreyan sedigheh ,sayyareh abolreza
منبع شانزدهمين كنفرانس آمار ايران - 1401 - دوره : 16 - شانزدهمین کنفرانس آمار ایران - کد همایش: 01220-18271 - صفحه:0 -0
چکیده    The smooth transition autoregressive generalized autoregressive conditionalheteroskedasticity, star-garch, models are becoming popular in modeling economicand financial time series. the most popular specifications of the transition functionare the u-shaped exponential function and the logistic function, which are suitablefor modelling economic and financial time series. estimation of star-garch is notentirely straightforward, so likelihood functions are then estimated using the numericalmethod. the convergence of the maximum likelihood estimator for star-garchmodels is sensitive to initial values. in this paper, we computed modified maximumlikelihood estimators of parameters of star-garch models and asymptotic distributionof modified maximum likelihood estimators. so that, we can select optimal modelbased on the vuong’s test. a set of simulation results also lends strong support to theresults presented in the paper.
کلیدواژه model selection; modified maximum likelihood; smooth transition; stargarchmodel; vuong’s test.
آدرس , iran, , iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved