|
|
data-based learning for probability density functions
|
|
|
|
|
نویسنده
|
abdullah yarob ,mohsin mohari alsarray rusul
|
منبع
|
شانزدهمين كنفرانس آمار ايران - 1401 - دوره : 16 - شانزدهمین کنفرانس آمار ایران - کد همایش: 01220-18271 - صفحه:0 -0
|
چکیده
|
In this study, we discuss the statistical perspective of clustering data thathave unknown probability distribution functions. a jackknife entropy-based clusteringalgorithm is introduced and utilized for clustering data. in order to this goal,we presented the renyi entropy with accomplishing the kullback-leibler divergence.experiments on real-world data show that our method is effective in finding good clustering.
|
کلیدواژه
|
clustering; classification; probability distribution functions; renyi entropy.
|
آدرس
|
, iran, , iran
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|