>
Fa   |   Ar   |   En
   data-based learning for probability density functions  
   
نویسنده abdullah yarob ,mohsin mohari alsarray rusul
منبع شانزدهمين كنفرانس آمار ايران - 1401 - دوره : 16 - شانزدهمین کنفرانس آمار ایران - کد همایش: 01220-18271 - صفحه:0 -0
چکیده    In this study, we discuss the statistical perspective of clustering data thathave unknown probability distribution functions. a jackknife entropy-based clusteringalgorithm is introduced and utilized for clustering data. in order to this goal,we presented the renyi entropy with accomplishing the kullback-leibler divergence.experiments on real-world data show that our method is effective in finding good clustering.
کلیدواژه clustering; classification; probability distribution functions; renyi entropy.
آدرس , iran, , iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved