>
Fa   |   Ar   |   En
   dimensionality reduction based on uncertain graph model  
   
نویسنده jahani arezoo
منبع اولين كنفرانس بين المللي و ششمين كنفرانس ملي كامپيوتر، فناوري اطلاعات و كاربردهاي هوش مصنوعي - 1401 - دوره : 1 - اولین کنفرانس بین المللی و ششمین کنفرانس ملی کامپیوتر، فناوری اطلاعات و کاربردهای هوش مصنوعی - کد همایش: 01220-12911 - صفحه:0 -0
چکیده    Classification in machine learning is done by many factors which called attributes. the higher the number of features, the more difficult it becomes to visualize the training set and then work on it. sometimes, most of these features are related to each other and are therefore considered redundant features. this is where dimensionality reduction (dr) algorithms come into play. in machine learning and statistics, dimensionality reduction is the process of reducing the number of supervised random variables by obtaining a set of main variables. dimensionality reduction can be divided into feature selection and feature extraction. this paper proposes a new dimensionality reduction algorithm in the feature selection category using pearson correlation of attributes and making uncertain graph models. the proposed model can be done for any number of features with increasing the classification performance compared with filter and wrapper strategies.
کلیدواژه reduction (dr) ,classification ,attributes ,feature selection.
آدرس , iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved