|
|
a combined approach of the supervised autoencoder and xgboost method for credit card fraud detection
|
|
|
|
|
نویسنده
|
abbasimehr hossein ,fanai hosein
|
منبع
|
اولين كنفرانس بين المللي و ششمين كنفرانس ملي كامپيوتر، فناوري اطلاعات و كاربردهاي هوش مصنوعي - 1401 - دوره : 1 - اولین کنفرانس بین المللی و ششمین کنفرانس ملی کامپیوتر، فناوری اطلاعات و کاربردهای هوش مصنوعی - کد همایش: 01220-12911 - صفحه:0 -0
|
چکیده
|
Losses related to fraudulent transactions are increasing, so building a fraud detection system is essential. previous studies have employed a variety of data mining and machine learning techniques to construct fraud detection systems. this study presents a new hybrid method based on the supervised autoencoder and the extreme gradient boosting (xgboost) method. this combined method uses the power of a supervised autoencoder to generate an expressive representation of the data. it employs the xgboost method as a robust classifier to detect fraudulent transactions. the hyperparameters of the proposed method are fine-tuned using the bayesian optimization algorithm. the experiments on a public dataset containing 280 thousand records demonstrated that the proposed method achieves better results than the baseline method considering all the performance criteria, including recall, precision, and f1 measure.
|
کلیدواژه
|
fraud detection; representation learning; deep learning; extreme gradient boosting; classification
|
آدرس
|
, iran, , iran
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|