>
Fa   |   Ar   |   En
   investigation of evolutionary optimization algorithms for estimating sandstone compressive strength  
   
نویسنده jolfaei somaie ,lakirouhani ali
منبع پنجمين كنفرانس ملي مهندسي ژئوتكنيك ايران و دومين كنفرانس بين المللي مهندسي زلزله و ژئوتكنيك لرزه اي - 1401 - دوره : 5 - پنجمین کنفرانس ملی مهندسی ژئوتکنیک ایران و دومین کنفرانس بین المللی مهندسی زلزله و ژئوتکنیک لرزه ای - کد همایش: 01220-77240 - صفحه:0 -0
چکیده    Directly determining rock compressive strength is both laborious and expensive. as a result, indirect estimation methods, such as artificial neural networks, are employed. input parameters, such as quartz content, dry density, and brazilian tensile strength, have been used to predict the compressive strength of sandstone. genetic algorithm (ga) and particle swarm optimization (pso) were selected to improve network training using evolutionary optimization algorithms effectiveness. the results demonstrate that the pso model achieved the best estimation performance with an of 0.0214 and of 0.95. the linear regression model exhibited inferior performance with an of 0.87.
کلیدواژه sandstone compressive strength، artificial neural network، evolutionary algorithms، genetic algorithm، particle swarm optimization
آدرس , iran, , iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved