>
Fa   |   Ar   |   En
   applying rf/nb/knn classification techniques on thermal and mechanical properties of different pmma/nano-silica  
   
نویسنده barforoushan alireza
منبع چهارمين كنفرانس بين المللي دوسالانه نفت، گاز و پتروشيمي - 1401 - دوره : 4 - چهارمین کنفرانس بین المللی دوسالانه نفت، گاز و پتروشیمی - کد همایش: 01220-20261 - صفحه:0 -0
چکیده    Different compositions of bone cement having various amounts of solid and liquid phase with nano-silica as a filler are provided. after mixing for 30 seconds, the compositions are injected into 2.5 ml plastic syringes. after that, the syringes are placed in an oven at 37°c for 24 hours. impact and compressive strengths are also attained. all the outcomes are examined by random forest (rf), k- nearest neighbor (knn) and naive bayes (nb) classification techniques and it is seen that the specimens which are categorized according to their features are devided into two collections of with filler and without filler.
کلیدواژه machine learning#nano-composite#thermal analysis#mechanical properties#
آدرس , iran
پست الکترونیکی alirezabarforoushan1991@yahoo.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved