>
Fa   |   Ar   |   En
   classification of reservoir rocks using deep learning  
   
نویسنده ghavami zahra ,khoozan davood ,sadeghnejad saeid
منبع چهارمين كنفرانس بين المللي دوسالانه نفت، گاز و پتروشيمي - 1401 - دوره : 4 - چهارمین کنفرانس بین المللی دوسالانه نفت، گاز و پتروشیمی - کد همایش: 01220-20261 - صفحه:0 -0
چکیده    Porosity, permeability, and hydrocarbon in place in reservoirs are among the critical parameters in petroleum engineering. to find them, it is necessary first to determine and diagnose lithology. lithology can be determined by geological analysis of slabbed whole cores. this process is usually done by hand during macroscopic core studies, which is time-consuming and may be influenced by user bias. thus, using efficient and automatic methods for lithology detection is of prime interest. this study uses machine learning methods to identify lithology and classify rocks from whole core images. for this purpose, we compared three widely used network architectures (i.e., resnet-50, resnext-50, and a convolutional neural network). the architectures are coded in the pytorch library. 3000 meters of whole core images from 28 wells of sandstone reservoirs are used as a dataset. this approach is automatic and free of user bias. our result shows that resnext-50 could predict and classify the lithology of unseen whole core images with 96.78% accuracy.
کلیدواژه whole core# lithology#image classification# deep learning#convolutional neural network#
آدرس , iran, , iran, , iran
پست الکترونیکی sadeghnejad@modares.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved