|
|
automated seismic velocity picking via deep semantic segmentation
|
|
|
|
|
نویسنده
|
saadat mahdi ,fakhari mohammad ghasem ,hosseini shoar behnam ,salehi ehsan
|
منبع
|
ششمين همايش ژئوفيزيك اكتشافي نفت - 1402 - دوره : 6 - ششمین همایش ژئوفیزیک اکتشافی نفت - کد همایش: 02230-21101 - صفحه:0 -0
|
چکیده
|
We developed a deep neural network model to automatically implement velocity analysis from semblance images, eliminating the need for extensive manual picking. our method treats velocity picking as an image segmentation task on input semblance images. we train a u-net convolutional neural network architecture using over 2000 common depth point (cdp) gathers and corresponding picked velocity profiles to segment the semblance images into distinct velocity regions. we optimize the model using techniques like sequence learning and customized loss functions. when evaluated on test cdp gathers excluded from training, the model achieved 99.3% accuracy in delineating the major velocity boundaries. this demonstrates the capability for high-quality automated velocity picking directly from seismic images using deep learning.
|
کلیدواژه
|
velocity analysis ,deep learning ,u-net ,encoder-decoder
|
آدرس
|
, iran, , iran, , iran, , iran
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|