>
Fa   |   Ar   |   En
   application of deep neural networks for spatial relation learning in seismic object detection  
   
نویسنده mohammad ghasem fakhari ,salehi ehsan ,saadat dastenayi mahdi
منبع ششمين همايش ژئوفيزيك اكتشافي نفت - 1402 - دوره : 6 - ششمین همایش ژئوفیزیک اکتشافی نفت - کد همایش: 02230-21101 - صفحه:0 -0
چکیده    Deep learning (dl) is the state-of-the-art machine learning (ml) technique which is widely deployed in academia and industry. dl allows automated identification of complicated patterns in large data sets (“big data”). since the seismic data can be treated as image, there have been many successful applications of dl in this field. in this study, we focus on dl in seismic interpretation, specifically seismic object detection. we present the application of the cnn technique to classify gas chimneys from shallow sediments containing gas. these sediments show similar characteristics as gas chimneys in selected seismic attributes used in conventional ml classification methods. our work showcases deep learning's exceptional capacity for spatial relationship modeling, enabling accurate seismic object detection even in complex cases where conventional machine learning approaches struggle.
کلیدواژه deep learning (dl) ,convolutional neural network (cnn) ,gas chimney
آدرس , iran, , iran, , iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved