>
Fa   |   Ar   |   En
   a multi-agent retrieval-augmented generation model with specialized domain agents  
   
نویسنده noormahmoodi amin ,rahimi fatemeh ,jafari kaleibar farhoud
منبع هشتمين كنفرانس ملي پيشرفت هاي معماري سازماني - 1403 - دوره : 8 - هشتمین کنفرانس ملی پيشرفت های معماری سازمانی - کد همایش: 03240-93281 - صفحه:0 -0
چکیده    Efficiently handling large volumes of customer inquiries across diverse domains is a significant challenge for organizations, especially in data-intensive industries like telecommunications. traditional methods struggle to provide accurate and timely responses as request volumes surge. this paper presents a multi-agent retrieval-augmented generation (rag) system that addresses these challenges by integrating specialized domain agents with an overarching language model supervisor. the system leverages few-shot prompting and the react technique to enhance the supervisor's reasoning and decision-making capabilities. specialized agents employ a novel weighted similarity metric to improve retrieval accuracy for numerical data. the proposed approach was evaluated in a real-world customer service infrastructure, demonstrating superior performance compared to traditional rag systems.
کلیدواژه retrieval-augmented generation،llm،multi-agent،data-intensive
آدرس , iran, , iran, , iran
پست الکترونیکی farhoudjafarikaleiba@cunet.carleon.ca
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved