|
|
a multi-agent retrieval-augmented generation model with specialized domain agents
|
|
|
|
|
نویسنده
|
noormahmoodi amin ,rahimi fatemeh ,jafari kaleibar farhoud
|
منبع
|
هشتمين كنفرانس ملي پيشرفت هاي معماري سازماني - 1403 - دوره : 8 - هشتمین کنفرانس ملی پيشرفت های معماری سازمانی - کد همایش: 03240-93281 - صفحه:0 -0
|
چکیده
|
Efficiently handling large volumes of customer inquiries across diverse domains is a significant challenge for organizations, especially in data-intensive industries like telecommunications. traditional methods struggle to provide accurate and timely responses as request volumes surge. this paper presents a multi-agent retrieval-augmented generation (rag) system that addresses these challenges by integrating specialized domain agents with an overarching language model supervisor. the system leverages few-shot prompting and the react technique to enhance the supervisor's reasoning and decision-making capabilities. specialized agents employ a novel weighted similarity metric to improve retrieval accuracy for numerical data. the proposed approach was evaluated in a real-world customer service infrastructure, demonstrating superior performance compared to traditional rag systems.
|
کلیدواژه
|
retrieval-augmented generation،llm،multi-agent،data-intensive
|
آدرس
|
, iran, , iran, , iran
|
پست الکترونیکی
|
farhoudjafarikaleiba@cunet.carleon.ca
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|