>
Fa   |   Ar   |   En
   a two-dimensional minimum residual technique for accelerating two-step iterative solvers  
   
نویسنده panjeh ali beik fatemeh ,benzi michele ,najafi-kalyani mehdi
منبع دوازدهمين سمينار جبر خطي و كاربردهاي آن - 1402 - دوره : 12 - دوازدهمین سمینار جبر خطی و کاربردهای آن - کد همایش: 02230-97347 - صفحه:0 -0
چکیده    In this talk, we present a technique to speed up the convergence of a class of two-step iterative methods for solving linear systems of equations. to implement the acceleration technique, the residual norm associated with computed approximations for each sub-iterate is minimized over a certain two-dimensional subspace. convergence properties of the resulting method will be discussed in detail. it will be further shown that the approach can be developed to solve (regularized) normal equations arising from the discretization of ill-posed problems. numerical experiments will be disclosed to illustrate the performance of exact and inexact variants of the method for some test problems.
کلیدواژه iterative methods ,minimum residual technique ,convergence ,normal equations ,ill-posed problems
آدرس , iran, , iran, , iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved